This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A052128 Largest factor of n that is coprime to a larger factor of n. 5
 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 3, 1, 1, 2, 1, 4, 3, 2, 1, 3, 1, 2, 1, 4, 1, 5, 1, 1, 3, 2, 5, 4, 1, 2, 3, 5, 1, 6, 1, 4, 5, 2, 1, 3, 1, 2, 3, 4, 1, 2, 5, 7, 3, 2, 1, 5, 1, 2, 7, 1, 5, 6, 1, 4, 3, 7, 1, 8, 1, 2, 3, 4, 7, 6, 1, 5, 1, 2, 1, 7, 5, 2, 3, 8, 1, 9, 7, 4, 3, 2, 5, 3, 1, 2, 9, 4, 1, 6 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,6 COMMENTS Least k > 0 such that the resultant of the k-th cyclotomic polynomial and the n-th cyclotomic polynomial is not 1. - Benoit Cloitre, Oct 13 2002 LINKS Charles R Greathouse IV, Table of n, a(n) for n = 1..10000 EXAMPLE a(6) = 6 / 3^1 = 2. MATHEMATICA Table[best = 1; d = Divisors[n]; While[Length[d] > 1, e = d[[1]]; d = Rest[d]; If[Min[GCD[e, d]] == 1, best = e]]; best, {n, 102}] (* T. D. Noe, Aug 23 2013 *) PROG (PARI) a(n) = my(i, j, d = divisors(n)); forstep (i = #d-1, 1, -1, for (j = i+1, #d, if (gcd(d[i], d[j]) == 1, return (d[i])))); 1 \\ Michel Marcus, Aug 22 2013 (PARI) a(n)=my(f=factor(n), v=[1]); for(i=1, #f~, v=concat(v, f[i, 1]^f[i, 2] *v)); v=vecsort(v); forstep(i=#v\2, 2, -1, for(j=i+1, #v-1, if(gcd(v[i], v[j])==1, return(v[i])))); 1 \\ Charles R Greathouse IV, Aug 22 2013 CROSSREFS Cf. A054372. Sequence in context: A284556 A025865 A085091 * A284600 A114536 A138010 Adjacent sequences:  A052125 A052126 A052127 * A052129 A052130 A052131 KEYWORD nonn AUTHOR James A. Sellers, Jan 21 2000 EXTENSIONS Terms corrected by Charles R Greathouse IV, Aug 22 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.