login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A117215
Number of divisors of x^n-1 having the maximal height A114536(n).
2
2, 4, 4, 8, 4, 2, 4, 16, 8, 2, 4, 2, 4, 2, 1, 32, 4, 14, 4, 2, 1, 2, 4, 20, 8, 2, 16, 2, 4, 2, 4, 64, 1, 2, 1, 18, 4, 2, 1, 2, 4, 2, 4, 2, 2, 2, 4, 2, 8, 14, 1, 2, 4, 70, 1, 2, 1, 2, 4, 2, 4, 2, 1, 128, 1, 2, 4, 2, 1, 2, 4, 10, 4, 2, 8, 2, 1, 2, 4, 4, 32, 2, 4, 2, 1, 2, 1, 2, 4, 2, 1, 2, 1, 2, 1, 32, 4, 14
OFFSET
1,1
COMMENTS
Let p be a prime. Then a(p)=4 because the divisors are x^p-1, x^(p-1)+x^(p-2)+...+1, x-1 and 1. Similarly, a(p^k)=2^(k+1). For n=p*2^k, a(n)=2. For odd primes p and q, a(pq)=1. Conjectures: if n is odd and squarefree, then a(n)=1; if n/2^k is odd and squarefree for k>0, then a(n)=2. All the divisors of x^n-1 are products of cyclotomic polynomials cyclo(d) for various d. When n is the product of distinct odd primes p1..pk, it appears that each cyclotomic index has the form d=p1^e1...pk^ek, where the ei are either 0 or 1 and sum(ei) is odd.
LINKS
Carl Pomerance and Nathan C. Ryan, The maximal height of divisors of x^n-1, Illinois J. Math. 51 (2007), no. 2, 597-604.
EXAMPLE
a(6)=2 because x^3+2x^2+2x+1 and x^3-2x^2+2x-1 both divide x^6-1. In fact, their product is x^6-1.
MATHEMATICA
cyc[n_] := cyc[n] = Cyclotomic[n, x];
PolyHeight[p_] := Max[Abs[CoefficientList[p, x]]];
Table[sd=Subsets[Divisors[n]]; t=Table[PolyHeight[Expand[Product[ cyc[sd[[i, j]]], {j, Length[sd[[i]]]}]]], {i, Length[sd]}]; Length[ Position[t, Max[t]]], {n, 105}]
PROG
(PARI)
prod_by_bits(bits, fs) = { my(m=1, i=1); while(bits>0, if((bits%2), m *= fs[i]); i++; bits >>= 1); (m); };
A117215(n) = { my(fs=factor('x^n - 1)[, 1], m=0, d, mds=0, k); for(b=0, (2^#fs)-1, d = prod_by_bits(b, fs); k = 0; for(j=0, poldegree(d), k = max(k, abs(polcoeff(d, j)))); if(k==m, mds++, if(k>m, mds=1; m = k))); (mds); }; \\ Antti Karttunen, Jul 01 2018
CROSSREFS
Cf. A114536.
Sequence in context: A184233 A356386 A055077 * A011173 A162943 A131136
KEYWORD
nonn
AUTHOR
T. D. Noe, Mar 03 2006
STATUS
approved