OFFSET
1,1
COMMENTS
Let p be a prime. Then a(p)=4 because the divisors are x^p-1, x^(p-1)+x^(p-2)+...+1, x-1 and 1. Similarly, a(p^k)=2^(k+1). For n=p*2^k, a(n)=2. For odd primes p and q, a(pq)=1. Conjectures: if n is odd and squarefree, then a(n)=1; if n/2^k is odd and squarefree for k>0, then a(n)=2. All the divisors of x^n-1 are products of cyclotomic polynomials cyclo(d) for various d. When n is the product of distinct odd primes p1..pk, it appears that each cyclotomic index has the form d=p1^e1...pk^ek, where the ei are either 0 or 1 and sum(ei) is odd.
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..719
Carl Pomerance and Nathan C. Ryan, The maximal height of divisors of x^n-1, Illinois J. Math. 51 (2007), no. 2, 597-604.
EXAMPLE
a(6)=2 because x^3+2x^2+2x+1 and x^3-2x^2+2x-1 both divide x^6-1. In fact, their product is x^6-1.
MATHEMATICA
cyc[n_] := cyc[n] = Cyclotomic[n, x];
PolyHeight[p_] := Max[Abs[CoefficientList[p, x]]];
Table[sd=Subsets[Divisors[n]]; t=Table[PolyHeight[Expand[Product[ cyc[sd[[i, j]]], {j, Length[sd[[i]]]}]]], {i, Length[sd]}]; Length[ Position[t, Max[t]]], {n, 105}]
PROG
(PARI)
prod_by_bits(bits, fs) = { my(m=1, i=1); while(bits>0, if((bits%2), m *= fs[i]); i++; bits >>= 1); (m); };
A117215(n) = { my(fs=factor('x^n - 1)[, 1], m=0, d, mds=0, k); for(b=0, (2^#fs)-1, d = prod_by_bits(b, fs); k = 0; for(j=0, poldegree(d), k = max(k, abs(polcoeff(d, j)))); if(k==m, mds++, if(k>m, mds=1; m = k))); (mds); }; \\ Antti Karttunen, Jul 01 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
T. D. Noe, Mar 03 2006
STATUS
approved