login
A033992
Numbers that are divisible by exactly three different primes.
36
30, 42, 60, 66, 70, 78, 84, 90, 102, 105, 110, 114, 120, 126, 130, 132, 138, 140, 150, 154, 156, 165, 168, 170, 174, 180, 182, 186, 190, 195, 198, 204, 220, 222, 228, 230, 231, 234, 238, 240, 246, 252, 255, 258, 260, 264, 266, 270, 273, 276, 280, 282, 285, 286
OFFSET
1,1
COMMENTS
This sequence and A000977 are identical through their first 32 terms, but A000977(33) = 210. [Comment edited by Jon E. Schoenfield, Dec 30 2014]
LINKS
Hans Montanus and Ron Westdijk, Cellular Automation and Binomials, Green Blue Mathematics (2022), p. 90.
FORMULA
omega(a(n)) = A001221(a(n)) = 3. - Jonathan Vos Post, Sep 20 2005
a(n) ~ 2n log n / (log log n)^2. - Charles R Greathouse IV, Jul 28 2016
EXAMPLE
220 = 2*2*5*11 is here but 210 = 2*3*5*7 is not; compare A000977.
MAPLE
A033992 := proc(n)
if (nops(numtheory[factorset](n)) = 3) then
RETURN(n)
fi: end: seq(A033992(n), n=1..500); # Jani Melik, Feb 24 2011
MATHEMATICA
Select[Range[300], PrimeNu[#]==3&] (* Harvey P. Dale, May 01 2013 *)
PROG
(Haskell)
a033992 n = a033992_list !! (n-1)
a033992_list = filter ((== 3) . a001221) [1..]
-- Reinhard Zumkeller, May 03 2013
(PARI) is(n)=omega(n)==3 \\ Charles R Greathouse IV, Apr 28 2015
(PARI) A246655(lim)=my(v=List(primes([2, lim\=1]))); for(e=2, logint(lim, 2), forprime(p=2, sqrtnint(lim, e), listput(v, p^e))); Set(v)
list(lim, pr=3)=if(pr==1, return(A246655(lim))); my(v=List(), pr1=pr-1, mx=prod(i=1, pr1, prime(i))); forprime(p=prime(pr), lim\mx, my(u=list(lim\p, pr1)); for(i=1, #u, listput(v, p*u[i]))); Set(v) \\ Charles R Greathouse IV, Feb 03 2023
CROSSREFS
A225228 is a subsequence.
Row 3 of A125666.
Sequence in context: A299991 A000977 A214195 * A360525 A308127 A349794
KEYWORD
nonn
AUTHOR
STATUS
approved