login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A033995
Number of bipartite graphs with n nodes.
25
1, 1, 2, 3, 7, 13, 35, 88, 303, 1119, 5479, 32303, 251135, 2527712, 33985853, 611846940, 14864650924, 488222721992, 21712049275198, 1308300679611469, 106897965189674291, 11852113048215107822, 1784730721403509209215, 365323537513403184463273
OFFSET
0,3
COMMENTS
All bipartite graphs are perfect. - Falk Hüffner, Nov 27 2015
EULER transform of A005142 [1, 1, 1, 3, 5, 17, ...] is [1, 2, 3, 7, 13, ...]. - Michael Somos, May 13 2019
REFERENCES
R. C. Read and R. J. Wilson, An Atlas of Graphs, Oxford, 1998.
LINKS
CombOS - Combinatorial Object Server, Generate graphs.
P. Erdős, D. J. Kleitman, and B. L. Rothschild, Asymptotic enumeration of k_n-free graphs. In Colloquio Internazionale sulle Teorie Combinatorie, (Rome, 1973), Tomo II, Atti dei Convegni Lincei, No. 17, pp. 19-27. Accad. Naz. Lincei, Rome.
P. Hanlon, The enumeration of bipartite graphs, Discrete Math. 28 (1979), 49-57.
S. Hougardy, Home Page.
S. Hougardy, Classes of perfect graphs, Discr. Math. 306 (2006), 2529-2571.
Eric Weisstein's World of Mathematics, Bipartite Graph.
Eric Weisstein's World of Mathematics, Bicolorable Graph.
Eric Weisstein's World of Mathematics, n-Colorable Graph.
EXAMPLE
For n=1: o; n=2: o o, o-o; n=3: o o o, o o-o, o-o-o; n=4: o o o o, o o o-o, o-o o-o, o o-o-o, o-o-o-o, K_{2,2}, K_{3,1}. - Michael Somos, May 13 2019
MATHEMATICA
A005142 = Cases[Import["https://oeis.org/A005142/b005142.txt", "Table"], {_, _}][[All, 2]];
(* EulerTransform is defined in A005195 *)
EulerTransform[Rest @ A005142] (* Jean-François Alcover, Mar 18 2020 *)
CROSSREFS
Row sums of A297877.
The labeled version is A047864.
Equals A076278(n) + 1.
Cf. A005142 (connected).
Sequence in context: A045611 A006840 A123408 * A345247 A373894 A013917
KEYWORD
nonn,nice
AUTHOR
Ronald C. Read
EXTENSIONS
a(0)=1 prepended and terms a(21) and beyond from Andrew Howroyd, Sep 05 2018
STATUS
approved