login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A033993
Numbers that are divisible by exactly four different primes.
23
210, 330, 390, 420, 462, 510, 546, 570, 630, 660, 690, 714, 770, 780, 798, 840, 858, 870, 910, 924, 930, 966, 990, 1020, 1050, 1092, 1110, 1122, 1140, 1155, 1170, 1190, 1218, 1230, 1254, 1260, 1290, 1302, 1320, 1326, 1330, 1365, 1380, 1386, 1410, 1428
OFFSET
1,1
COMMENTS
For a(n) < 30030 = 2 * 3 * 5 * 7 * 11 * 13 this is identical to "numbers with a semiprime number of distinct prime factors." - Jonathan Vos Post, Sep 21 2005
LINKS
Hans Montanus and Ron Westdijk, Cellular Automation and Binomials, Green Blue Mathematics (2022), p. 90.
FORMULA
a(n) has exactly 4 distinct prime factors. omega(a(n)) = A001221(a(n)) = 4. - Jonathan Vos Post, Sep 21 2005
EXAMPLE
The 4th primorial is the first term of this sequence: A002110(4) = 210.
MATHEMATICA
Select[Range[1500], Length[FactorInteger[#]] == 4 &] (* Vladimir Joseph Stephan Orlovsky, Apr 22 2010 *)
PROG
(PARI) is(n)=omega(n)==4 \\ Charles R Greathouse IV, Sep 17 2015
(PARI) A246655(lim)=my(v=List(primes([2, lim\=1]))); for(e=2, logint(lim, 2), forprime(p=2, sqrtnint(lim, e), listput(v, p^e))); Set(v)
list(lim, pr=4)=if(pr==1, return(A246655(lim))); my(v=List(), pr1=pr-1, mx=prod(i=1, pr1, prime(i))); forprime(p=prime(pr), lim\mx, my(u=list(lim\p, pr1)); for(i=1, #u, listput(v, p*u[i]))); Set(v) \\ Charles R Greathouse IV, Feb 03 2023
CROSSREFS
Row 4 of A125666.
Sequence in context: A119427 A127424 A074159 * A350373 A046386 A379762
KEYWORD
nonn,easy
AUTHOR
STATUS
approved