This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A001241 Differences of reciprocals of unity. (Formerly M5301 N2305) 3
 1, 50, 1660, 46760, 1217776, 30480800, 747497920, 18139003520, 437786795776, 10536798272000, 253246254177280, 6082300519393280, 146028165842661376, 3505313580591718400, 84135194495708938240, 2019336829962040279040 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 REFERENCES F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 228. M. Merca, Some experiments with complete and elementary symmetric functions, - Periodica Mathematica Hungarica, 69 (2014), 182-189. N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992. Simon Plouffe, 1031 Generating Functions and Conjectures, Université du Québec à Montréal, 1992. FORMULA G.f.: x / [(1-6x)(1-8x)(1-12x)(1-24x) ]. (1/6) [ -6^n + 3*8^n - 3*12^n + 24^n ]. MAPLE A001241:=1/(6*z-1)/(8*z-1)/(12*z-1)/(24*z-1); [Conjectured by Simon Plouffe in his 1992 dissertation.] CROSSREFS Equals 2^(n-1) * A028037(n-1). Right-hand column 3 in triangle A008969. Cf. a(n)=A112492(n+2, 4). Sequence in context: A159187 A075912 A062151 * A164986 A224121 A238283 Adjacent sequences:  A001238 A001239 A001240 * A001242 A001243 A001244 KEYWORD nonn,easy AUTHOR EXTENSIONS Formulae and more terms from Ralf Stephan, Feb 20 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 16 19:43 EDT 2019. Contains 324155 sequences. (Running on oeis4.)