OFFSET
0,5
COMMENTS
This is a divisibility sequence; that is, if n divides m then a(n) divides a(m). - T. D. Noe, Dec 22 2008
This is the case P1 = 1, P2 = -3, Q = 1 of the 3 parameter family of 4th-order linear divisibility sequences found by Williams and Guy. - Peter Bala, Mar 31 2014
Also, the inverse radii of a family of spheres defined as follows: the first three spheres have radius of 1 and touch each other and the common plane, while each subsequent sphere touches the three immediately preceding ones and the same plane. - Ivan Neretin, Sep 11 2018
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
A. D. Mednykh, I. A. Mednykh, The number of spanning trees in circulant graphs, its arithmetic properties and asymptotic, arXiv preprint arXiv:1711.00175 [math.CO], 2017. See Section 4.
Wikipedia, Soddy-Gosset theorem.
H. C. Williams and R. K. Guy, Some fourth-order linear divisibility sequences, Intl. J. Number Theory 7 (5) (2011) 1255-1277.
H. C. Williams and R. K. Guy, Some Monoapparitic Fourth Order Linear Divisibility Sequences Integers, Volume 12A (2012) The John Selfridge Memorial Volume
Index entries for linear recurrences with constant coefficients, signature (1,1,1,-1).
FORMULA
From R. J. Mathar, Mar 31 2008: (Start)
O.g.f: -x*(x-1)*(x+1)/(1 - x - x^2 - x^3 + x^4).
From Peter Bala, Mar 31 2014: (Start)
a(n) = ( T(n,alpha) - T(n,beta) )/(alpha - beta), where alpha = (1 + sqrt(13))/4 and beta = (1 - sqrt(13))/4 and T(n,x) denotes the Chebyshev polynomial of the first kind.
a(n) = the bottom left entry of the 2 X 2 matrix T(n, M), where M is the 2 X 2 matrix [0, 3/4; 1, 1/2].
a(n) = U(n-1,(sqrt(3) + i)/4)*U(n-1,(sqrt(3) - i)/4), where U(n,x) denotes the Chebyshev polynomial of the second kind.
See the remarks in A100047 for the general connection between Chebyshev polynomials and 4th-order linear divisibility sequences. (End)
a(n) = a(-n) = A116732(n+2) - A116732(n), 0 = a(n) - 2*a(n+1) + 2*a(n+4) - a(n+5) for all n in Z. - Michael Somos, Feb 26 2019
EXAMPLE
G.f. = x + x^2 + x^3 + 3*x^4 + 4*x^5 + 7*x^6 + 13*x^7 + 21*x^8 + ... - Michael Somos, Feb 26 2019
MAPLE
a[0]:=0: a[1]:=1: a[2]:=1: a[3]:=1: for n from 4 to 35 do a[n]:= a[n-1]+a[n-2]+a[n-3]-a[n-4] end do: seq(a[n], n=0..35); # Emeric Deutsch, Apr 12 2008
MATHEMATICA
a = {0, 1, 1, 1, 3}; Do[AppendTo[a, a[[ -1]]+a[[ -2]]+a[[ -3]]-a[[ -4]]], {80}]; a (* Stefan Steinerberger, Mar 24 2008 *)
CoefficientList[Series[(- x^3 + x)/(x^4 - x^3 - x^2 - x + 1), {x, 0, 50}], x] (* Vincenzo Librandi, Apr 02 2014 *)
a[ n_] := 1 - SeriesCoefficient[ (1 - 2 x) / (1 - 2 x + 2 x^4 - x^5), {x, 0, Abs@n}]; (* Michael Somos, Feb 26 2019 *)
LinearRecurrence[{1, 1, 1, -1}, {0, 1, 1, 1}, 50] (* Harvey P. Dale, Mar 26 2019 *)
PROG
(PARI) {a(n) = n=abs(n); 1 - polcoeff( (1 - 2*x) / (1 - 2*x + 2*x^4 - x^5) + x * O(x^n), n)}; /* Michael Somos, Feb 26 2019 */
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
R. K. Guy, Mar 23 2008
STATUS
approved