login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A145390
Number of sublattices of index n of a centered rectangular lattice fixed by a reflection.
6
1, 1, 2, 3, 2, 2, 2, 5, 3, 2, 2, 6, 2, 2, 4, 7, 2, 3, 2, 6, 4, 2, 2, 10, 3, 2, 4, 6, 2, 4, 2, 9, 4, 2, 4, 9, 2, 2, 4, 10, 2, 4, 2, 6, 6, 2, 2, 14, 3, 3, 4, 6, 2, 4, 4, 10, 4, 2, 2, 12, 2, 2, 6, 11, 4, 4, 2, 6, 4, 4, 2, 15, 2, 2, 6, 6, 4, 4, 2, 14, 5, 2, 2, 12, 4, 2, 4, 10, 2, 6, 4, 6, 4, 2, 4, 18, 2, 3, 6, 9, 2
OFFSET
1,3
COMMENTS
a(n) is the Dirichlet convolution of A000012 and A098178. - Domenico (domenicoo(AT)gmail.com), Oct 21 2009
LINKS
Amihay Hanany, Domenico Orlando, and Susanne Reffert, Sublattice counting and orbifolds, High Energ. Phys., 2010 (2010), 51, arXiv.org:1002.2981 [hep-th] (see Table 3).
FORMULA
Dirichlet g.f.: (1-2^(-s) + 2*4^(-s))*zeta^2(s).
G.f.: Sum_n (1 + cos(n*Pi/2)) x^n / (1 - x^n). - Domenico (domenicoo(AT)gmail.com), Oct 21 2009
If 4|n then a(n) = d(n) - d(n/2) + 2*d(n/4); else if 2|n then a(n) = d(n) - d(n/2); else a(n) = d(n); where d(n) is the number of divisors of n. [Rutherford] - Andrey Zabolotskiy, Mar 10 2018
a(n) = Sum_{ m: m^2|n } A060594(n/m^2). - Andrey Zabolotskiy, May 07 2018
Sum_{k=1..n} a(k) ~ n*(log(n) - 1 + 2*gamma - log(2)/2), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Feb 02 2019
Multiplicative with a(2^e) = 2*e-1 and a(p^e) = e+1 for an odd prime p. - Amiram Eldar, Aug 27 2023
MAPLE
nmax := 100 :
L := [1, -1, 0, 2, seq(0, i=1..nmax)] :
MOBIUSi(%) :
MOBIUSi(%) ; # R. J. Mathar, Sep 25 2017
MATHEMATICA
m = 101; Drop[ CoefficientList[ Series[ Sum[(1 + Cos[n*Pi/2])*x^n/(1 - x^n), {n, 1, m}], {x, 0, m}], x], 1] (* Jean-François Alcover, Sep 20 2011, after formula *)
f[p_, e_] := e+1; f[2, e_] := 2*e-1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Aug 27 2023 *)
PROG
(PARI) t1=direuler(p=2, 200, 1/(1-X)^2)
t2=direuler(p=2, 2, 1-X+2*X^2, 200)
t3=dirmul(t1, t2)
CROSSREFS
Cf. A098178, A060594 (primitive sublattices only), A145391.
Sequence in context: A306225 A373249 A077199 * A270026 A340703 A128049
KEYWORD
nonn,easy,mult
AUTHOR
N. J. A. Sloane, Feb 23 2009, Mar 13 2009
EXTENSIONS
New name from Andrey Zabolotskiy, Mar 10 2018
STATUS
approved