login
This site is supported by donations to The OEIS Foundation.

 

Logo

"Email this user" was broken Aug 14 to 9am Aug 16. If you sent someone a message in this period, please send it again.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A001240 Expansion of 1/((1-2x)(1-3x)(1-6x)).
(Formerly M4798 N2049)
4
1, 11, 85, 575, 3661, 22631, 137845, 833375, 5019421, 30174551, 181222405, 1087861775, 6528756781, 39177307271, 235078159765, 1410511939775, 8463200647741, 50779591044791, 304678708005925 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Differences of reciprocals of unity.

REFERENCES

F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 228.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

T. D. Noe, Table of n, a(n) for n = 1..100

Mircea Merca, Some experiments with complete and elementary symmetric functions, Periodica Mathematica Hungarica, 69 (2014), 182-189.

Jerry Metzger and Thomas Richards, A Prisoner Problem Variation, Journal of Integer Sequences, Vol. 18 (2015), Article 15.2.7.

Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992.

Simon Plouffe, 1031 Generating Functions and Conjectures, Université du Québec à Montréal, 1992.

Index entries for linear recurrences with constant coefficients, signature (11,-36,36).

FORMULA

a(n) = 11a(n-1) - 36a(n-2) + 36a(n-3). - John W. Layman

a(n) = (6^n - 2*3^n + 2^n)/2. Also -x^2/6*Beta(x, 4) = Sum_{n>=0} a(n)*(-x/6)^n. Thus x^2*Beta(x, 4) = x - 11/6*x^2 + 85/36*x^3 - 575/216*x^4 + 3661/1296*x^5 - ... . - Vladeta Jovovic, Aug 09 2002

a(n) = Sum_{0<=i,j,k,<=n, i+j+k=n} 2^i*3^j*6^k. - Hieronymus Fischer, Jun 25 2007

a(n) = 2^n + 3^(n+1)*(2^n-1). - Hieronymus Fischer, Jun 25 2007

MAPLE

A001240:=-1/((6*z-1)*(3*z-1)*(2*z-1)); # conjectured (correctly) by Simon Plouffe in his 1992 dissertation

MATHEMATICA

CoefficientList[Series[1/((1-2x)(1-3x)(1-6x)), {x, 0, 25}], x] (* or *) LinearRecurrence[{11, -36, 36}, {1, 11, 85}, 25] (* Harvey P. Dale, May 15 2011 *)

PROG

(PARI) a(n)=(6^n-2*3^n+2^n)/2 \\ Charles R Greathouse IV, Feb 19 2017

CROSSREFS

Right-hand column 2 in triangle A008969.

a(n) = A112492(n+1, 3).

Sequence in context: A026783 A244975 A271558 * A129180 A082365 A012794

Adjacent sequences:  A001237 A001238 A001239 * A001241 A001242 A001243

KEYWORD

nonn,easy,nice

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified August 20 20:09 EDT 2017. Contains 290837 sequences.