|
|
A001227
|
|
Number of odd divisors of n.
|
|
344
|
|
|
1, 1, 2, 1, 2, 2, 2, 1, 3, 2, 2, 2, 2, 2, 4, 1, 2, 3, 2, 2, 4, 2, 2, 2, 3, 2, 4, 2, 2, 4, 2, 1, 4, 2, 4, 3, 2, 2, 4, 2, 2, 4, 2, 2, 6, 2, 2, 2, 3, 3, 4, 2, 2, 4, 4, 2, 4, 2, 2, 4, 2, 2, 6, 1, 4, 4, 2, 2, 4, 4, 2, 3, 2, 2, 6, 2, 4, 4, 2, 2, 5, 2, 2, 4, 4, 2, 4, 2, 2, 6, 4, 2, 4, 2, 4, 2, 2, 3, 6, 3, 2, 4, 2, 2, 8
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
COMMENTS
|
Also (1) number of ways to write n as difference of two triangular numbers (A000217); (2) number of ways to arrange n identical objects in a trapezoid. - Tom Verhoeff
Also number of partitions of n into consecutive positive integers including the trivial partition of length 1 (e.g., 9 = 2+3+4 or 4+5 or 9 so a(9)=3). (Useful for cribbage players.) - Henry Bottomley, Apr 13 2000
a(n) is also the number of factors in the factorization of the Chebyshev polynomial of the first kind T_n(x). - Yuval Dekel (dekelyuval(AT)hotmail.com), Aug 28 2003
Number of factors in the factorization of the polynomial x^n+1 over the integers. See also A000005. - T. D. Noe, Apr 16 2003
a(n) = 1 iff n is a power of 2 (see A000079). - Lekraj Beedassy, Apr 12 2005
Number of occurrences of n in A049777. - Philippe Deléham, Jun 19 2005
For n odd, n is prime iff the n-th term of the sequence is 2. - George J. Schaeffer (gschaeff(AT)andrew.cmu.edu), Sep 10 2005
Also number of partitions of n such that if k is the largest part, then each of the parts 1,2,...,k-1 occurs exactly once. Example: a(9)=3 because we have [3,3,2,1],[2,2,2,2,1] and [1,1,1,1,1,1,1,1,1]. - Emeric Deutsch, Mar 07 2006
Also the number of factors of the n-th Lucas polynomial. - T. D. Noe, Mar 09 2006
Lengths of rows of triangle A182469;
a(A000079(n)) = 1; a(A057716(n)) > 1; a(A093641(n)) <= 2; a(A038550(n)) = 2; a(A105441(n)) > 2; a(A072502(n)) = 3. - Reinhard Zumkeller, May 01 2012
Denoted by Delta_0(n) in Glaisher 1907. - Michael Somos, May 17 2013
Also the number of partitions p of n into distinct parts such that max(p) - min(p) < length(p). - Clark Kimberling, Apr 18 2014
Row sums of triangle A247795. - Reinhard Zumkeller, Sep 28 2014
Row sums of triangle A237048. - Omar E. Pol, Oct 24 2014
A069288(n) <= a(n). - Reinhard Zumkeller, Apr 05 2015
A000203, A000593 and this sequence have the same parity: A053866. - Omar E. Pol, May 14 2016
a(n) is equal to the number of ways to write 2*n-1 as (4*x + 2)*y + 4*x + 1 where x and y are nonnegative integers. Also a(n) is equal to the number of distinct values of k such that k/(2*n-1) + k divides (k/(2*n-1))^(k/(2*n-1)) + k, (k/(2*n-1))^k + k/(2*n-1) and k^(k/(2*n-1)) + k/(2*n-1). - Juri-Stepan Gerasimov, May 23 2016, Jul 15 2016
Also the number of odd divisors of n*2^m for m >= 0. - Juri-Stepan Gerasimov, Jul 15 2016
a(n) is odd iff n is a square or twice a square. - Juri-Stepan Gerasimov, Jul 17 2016
a(n) is also the number of subparts in the symmetric representation of sigma(n). For more information see A279387 and A237593. - Omar E. Pol, Nov 05 2016
a(n) is also the number of partitions of n into an odd number of equal parts. - Omar E. Pol, May 14 2017 [This follows from the g.f. Sum_{k >= 1} x^k/(1-x^(2*k)). - N. J. A. Sloane, Dec 03 2020]
|
|
REFERENCES
|
B. C. Berndt, Ramanujan's Notebooks Part V, Springer-Verlag, see p. 487 Entry 47.
L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 1, p. 306.
J. W. L. Glaisher, On the representations of a number as the sum of two, four, six, eight, ten, and twelve squares, Quart. J. Math. 38 (1907), 1-62 (see p. 4).
Graham, Knuth and Patashnik, Concrete Mathematics, 2nd ed. (Addison-Wesley, 1994), see exercise 2.30 on p. 65.
P. A. MacMahon, Combinatory Analysis, Cambridge Univ. Press, London and New York, Vol. 1, 1915 and Vol. 2, 1916; see vol. 2, p 28.
|
|
LINKS
|
N. J. A. Sloane, Table of n, a(n) for n = 1..10000
K. S. Brown's Mathpages, Partitions into Consecutive Integers
J. W. L. Glaisher, On the representations of a number as the sum of two, four, six, eight, ten, and twelve squares, Quart. J. Math. 38 (1907), 1-62 (see p. 4 and p. 8).
A. Heiligenbrunner, Sum of adjacent numbers (in German).
Mircea Merca, Combinatorial interpretations of a recent convolution for the number of divisors of a positive integer, Journal of Number Theory, Volume 160, March 2016, Pages 60-75, function tau_o(n).
M. A. Nyblom, On the representation of the integers as a difference of nonconsecutive triangular numbers, Fibonacci Quarterly 39:3 (2001), pp. 256-263.
R. C. Read, Letter to N. J. A. Sloane, Oct. 29, 1976
N. J. A. Sloane, Transforms
T. Verhoeff, Rectangular and Trapezoidal Arrangements, J. Integer Sequences, Vol. 2, 1999, #99.1.6.
Eric Weisstein's World of Mathematics, Binomial Number and Odd Divisor Function.
Eric Weisstein's World of Mathematics, q-Polygamma Function.
Index entries for "core" sequences
Index entries for sequences mentioned by Glaisher
|
|
FORMULA
|
Dirichlet g.f.: zeta(s)^2*(1-1/2^s).
Comment from N. J. A. Sloane, Dec 02 2020 (Start):
By counting the odd divisors f n in different ways, we get three different ways of writing the ordinary generating function. It is:
A(x) = x + x^2 + 2*x^3 + x^4 + 2*x^5 + 2*x^6 + 2*x^7 + x^8 + 3*x^9 + 2*x^10 + ...
= Sum_{k >= 1} x^(2*k-1)/(1-x^(2*k-1))
= Sum_{k >= 1} x^k/(1-x^(2*k))
= Sum_{k >= 1} x^(k*(k+1)/2)/(1-x^k) [Ramanujan, 2nd notebook, p. 355.].
(This incorporates comments from Vladeta Jovovic, Oct 16 2002 and Michael Somos, Oct 30 2005.) (End)
G.f.: x/(1-x) + Sum_{n>=1} x^(3*n)/(1-x^(2*n)), also L(x)-L(x^2) where L(x) = Sum_{n>=1} x^n/(1-x^n). - Joerg Arndt, Nov 06 2010
a(n) = A000005(n)/(A007814(n)+1) = A000005(n)/A001511(n).
Multiplicative with a(p^e) = 1 if p = 2; e+1 if p > 2. - David W. Wilson, Aug 01 2001
a(n) = A000005(A000265(n)). - Lekraj Beedassy, Jan 07 2005
Moebius transform is period 2 sequence [1, 0, ...] = A000035, which means a(n) is the Dirichlet convolution of A000035 and A057427.
a(n) = A113414(2*n). - N. J. A. Sloane, Jan 24 2006 (corrected Nov 10 2007)
a(n) = A001826(n) + A001842(n). - Reinhard Zumkeller, Apr 18 2006
Sequence = M*V = A115369 * A000005, where M = an infinite lower triangular matrix and V = A000005, d(n); as a vector: [1, 2, 2, 3, 2, 4, ...]. - Gary W. Adamson, Apr 15 2007
Equals A051731 * [1,0,1,0,1,...]; where A051731 is the inverse Mobius transform. - Gary W. Adamson, Nov 06 2007
a(n) = A000005(n) - A183063(n).
a(n) = d(n) if n is odd, else d(n) - d(n/2), where d(n) is the number of divisors of n (A000005). (See the Weisstein page.) - Gary W. Adamson, Mar 15 2011
Dirichlet convolution of A000005 and A154955 (interpreted as a flat sequence). - R. J. Mathar, Jun 28 2011
a(n) = 1 + A069283(n). - R. J. Mathar, Jun 18 2015
a(A002110(n)/2) = n, n >= 1. - Altug Alkan, Sep 29 2015
a(n*2^m) = a(n*2^i), a((2*j+1)^n) = n+1 for m >= 0, i >= 0 and j >= 0. a((2*x+1)^n) = a((2*y+1)^n) for positive x and y. - Juri-Stepan Gerasimov, Jul 17 2016
Conjectures: a(n) = A067742(n) + 2*A131576(n) = A082647(n) + A131576(n). - Omar E. Pol, Feb 15 2017
a(n) = A000005(2n) - A000005(n). - Danny Rorabaugh, Oct 03 2017
L.g.f.: -log(Product_{k>=1} (1 - x^(2*k-1))^(1/(2*k-1))) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, Jul 30 2018
G.f.: (psi_{q^2}(1/2) + log(1-q^2))/log(q), where psi_q(z) is the q-digamma function. - Michael Somos, Jun 01 2019
|
|
EXAMPLE
|
G.f. = q + q^2 + 2*q^3 + q^4 + 2*q^5 + 2*q^6 + 2*q^7 + q^8 + 3*q^9 + 2*q^10 + ...
From Omar E. Pol, Nov 30 2020: (Start)
For n = 9 there are three odd divisors of 9; they are [1, 3, 9]. On the other hand there are three partitions of 9 into consecutive parts: they are [9], [5, 4] and [4, 3, 2], so a(9) = 3.
Illustration of initial terms:
Diagram
n a(n) _
1 1 _|1|
2 1 _|1 _|
3 2 _|1 |1|
4 1 _|1 _| |
5 2 _|1 |1 _|
6 2 _|1 _| |1|
7 2 _|1 |1 | |
8 1 _|1 _| _| |
9 3 _|1 |1 |1 _|
10 2 _|1 _| | |1|
11 2 _|1 |1 _| | |
12 2 |1 | |1 | |
...
a(n) is the number of horizontal line segments in the n-th level of the diagram. For more information see A286001. (End)
|
|
MAPLE
|
for n from 1 by 1 to 100 do s := 0: for d from 1 by 2 to n do if n mod d = 0 then s := s+1: fi: od: print(s); od:
A001227 := proc(n) local a, d;
a := 1 ;
for d in ifactors(n)[2] do
if op(1, d) > 2 then
a := a*(op(2, d)+1) ;
end if;
end do:
a ;
end proc: # R. J. Mathar, Jun 18 2015
|
|
MATHEMATICA
|
f[n_] := Block[{d = Divisors[n]}, Count[ OddQ[d], True]]; Table[ f[n], {n, 105}] (* Robert G. Wilson v, Aug 27 2004 *)
Table[Total[Mod[Divisors[n], 2]], {n, 105}] (* Zak Seidov, Apr 16 2010 *)
f[n_] := Block[{d = DivisorSigma[0, n]}, If[ OddQ@ n, d, d - DivisorSigma[0, n/2]]]; Array[f, 105] (* Robert G. Wilson v *)
a[ n_] := Sum[ Mod[ d, 2], { d, Divisors[ n]}]; (* Michael Somos, May 17 2013 *)
a[ n_] := DivisorSum[ n, Mod[ #, 2] &]; (* Michael Somos, May 17 2013 *)
Count[Divisors[#], _?OddQ]&/@Range[110] (* Harvey P. Dale, Feb 15 2015 *)
(* using a262045 from A262045 to compute a(n) = number of subparts in the symmetric representation of sigma(n) *)
(* cl = current level, cs = current subparts count *)
a001227[n_] := Module[{cs=0, cl=0, i, wL, k}, wL=a262045[n]; k=Length[wL]; For[i=1, i<=k, i++, If[wL[[i]]>cl, cs++; cl++]; If[wL[[i]]<cl, cl--]]; cs]
a001227[105] (* sequence data *) (* Hartmut F. W. Hoft, Dec 16 2016 *)
|
|
PROG
|
(PARI) {a(n) = sumdiv(n, d, d%2)}; /* Michael Somos, Oct 06 2007 */
(PARI) {a(n) = direuler( p=2, n, 1 / (1 - X) / (1 - kronecker( 4, p) * X))[n]}; /* Michael Somos, Oct 06 2007 */
(PARI) a(n)=numdiv(n>>valuation(n, 2)) \\ Charles R Greathouse IV, Mar 16 2011
(PARI) a(n)=sum(k=1, round(solve(x=1, n, x*(x+1)/2-n)), (k^2-k+2*n)%(2*k)==0) \\ Charles R Greathouse IV, May 31 2013
(PARI) a(n)=sumdivmult(n, d, d%2) \\ Charles R Greathouse IV, Aug 29 2013
(Haskell)
a001227 = sum . a247795_row
-- Reinhard Zumkeller, Sep 28 2014, May 01 2012, Jul 25 2011
(Sage)
def A001227(n): return len([1 for d in divisors(n) if is_odd(d)])
[A001227(n) for n in (1..80)] # Peter Luschny, Feb 01 2012
(MAGMA) [NumberOfDivisors(n)/Valuation(2*n, 2): n in [1..100]]; // Vincenzo Librandi, Jun 02 2019
|
|
CROSSREFS
|
Cf. A000005, A000079, A000593, A050999, A051000, A051001, A051002, A051731, A054844, A069283, A069288, A109814, A115369, A118235, A118236, A125911, A136655, A183063, A183064, A237593, A247795, A272887, A273401, A279387, A286001.
Cf. A000203, A000593, A053866.
Sequence in context: A327657 A301957 A318874 * A060764 A105149 A295894
Adjacent sequences: A001224 A001225 A001226 * A001228 A001229 A001230
|
|
KEYWORD
|
nonn,easy,nice,mult,core
|
|
AUTHOR
|
N. J. A. Sloane
|
|
STATUS
|
approved
|
|
|
|