
REFERENCES

Brendan McKay, personal communication, Feb 03, 1997.
W. W. Rouse Ball, Mathematical Recreations and Essays (various editions), Chap. 6.
I. Wegener, Branching Programs and Binary Decision Diagrams, SIAM, Philadelphia, 2000; see p. 369.


LINKS

Table of n, a(n) for n=1..4.
G. L. Chia, SiewHui Ong, Generalized knight's tour on rectangular chessboards, Disc. Appl. Math. 150(13) (2005) 8098
N. D. Elkies and R. P. Stanley, The mathematical knight, Math. Intelligencer, 25 (No. 1) (2003), 2234.
Brady Haran, Knight's Tour  Numberphile (2014)
George Jelliss, Knight's Tour Notes
M. Loebbing and I. Wegener, The Number of Knight's Tours Equals 33,439,123,484,294  Counting with Binary Decision Diagrams. Electronic Journal of Combinatorics 3 (1996), R5. [The number given in the paper is incorrect, see comments.]
B. D. McKay, "Knight's Tours of an 8x8 Chessboard". Technical Report TRCS9703, Department of Computer Science, Australian National University (1997).
B. D. McKay, Knight's Tours of an 8x8 Chessboard [Cached copy, with permission]
Eric Weisstein's World of Mathematics, Hamiltonian Cycle
Eric Weisstein's World of Mathematics, Knight Graph
Wikipedia, Knight's tour
