login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A333217 Numbers k such that the k-th composition in standard order covers an initial interval of positive integers. 106
0, 1, 3, 5, 6, 7, 11, 13, 14, 15, 21, 22, 23, 26, 27, 29, 30, 31, 37, 38, 41, 43, 44, 45, 46, 47, 50, 52, 53, 54, 55, 58, 59, 61, 62, 63, 75, 77, 78, 83, 85, 86, 87, 89, 90, 91, 92, 93, 94, 95, 101, 102, 105, 106, 107, 108, 109, 110, 111, 114, 116, 117, 118 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

The k-th composition in standard order (row k of A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again.

LINKS

Table of n, a(n) for n=1..63.

EXAMPLE

The sequence of terms together with the corresponding compositions begins:

    0: ()              37: (3,2,1)           75: (3,2,1,1)

    1: (1)             38: (3,1,2)           77: (3,1,2,1)

    3: (1,1)           41: (2,3,1)           78: (3,1,1,2)

    5: (2,1)           43: (2,2,1,1)         83: (2,3,1,1)

    6: (1,2)           44: (2,1,3)           85: (2,2,2,1)

    7: (1,1,1)         45: (2,1,2,1)         86: (2,2,1,2)

   11: (2,1,1)         46: (2,1,1,2)         87: (2,2,1,1,1)

   13: (1,2,1)         47: (2,1,1,1,1)       89: (2,1,3,1)

   14: (1,1,2)         50: (1,3,2)           90: (2,1,2,2)

   15: (1,1,1,1)       52: (1,2,3)           91: (2,1,2,1,1)

   21: (2,2,1)         53: (1,2,2,1)         92: (2,1,1,3)

   22: (2,1,2)         54: (1,2,1,2)         93: (2,1,1,2,1)

   23: (2,1,1,1)       55: (1,2,1,1,1)       94: (2,1,1,1,2)

   26: (1,2,2)         58: (1,1,2,2)         95: (2,1,1,1,1,1)

   27: (1,2,1,1)       59: (1,1,2,1,1)      101: (1,3,2,1)

   29: (1,1,2,1)       61: (1,1,1,2,1)      102: (1,3,1,2)

   30: (1,1,1,2)       62: (1,1,1,1,2)      105: (1,2,3,1)

   31: (1,1,1,1,1)     63: (1,1,1,1,1,1)    106: (1,2,2,2)

MATHEMATICA

normQ[m_]:=Or[m=={}, Union[m]==Range[Max[m]]];

stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n, 2]], 1], 0]]//Reverse;

Select[Range[0, 100], normQ[stc[#]]&]

CROSSREFS

Sequences covering an initial interval are counted by A000670.

Composition in standard order are A066099.

The case of strictly increasing initial intervals is A164894.

The case of strictly decreasing initial intervals is A246534.

The case of permutations is A333218.

The weakly increasing version is A333379.

The weakly decreasing version is A333380.

Cf. A000120, A029931, A048793, A070939, A225620, A228351, A233564, A272919, A333219, A333220.

Sequence in context: A328952 A072600 A047582 * A301975 A015814 A227026

Adjacent sequences:  A333214 A333215 A333216 * A333218 A333219 A333220

KEYWORD

nonn

AUTHOR

Gus Wiseman, Mar 15 2020

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 29 11:12 EDT 2020. Contains 337431 sequences. (Running on oeis4.)