This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A137921 Number of divisors d of n such that d+1 is not a divisor of n. 8
 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 2, 3, 2, 3, 4, 4, 2, 4, 2, 4, 4, 3, 2, 5, 3, 3, 4, 5, 2, 5, 2, 5, 4, 3, 4, 6, 2, 3, 4, 6, 2, 5, 2, 5, 6, 3, 2, 7, 3, 5, 4, 5, 2, 6, 4, 6, 4, 3, 2, 7, 2, 3, 6, 6, 4, 6, 2, 5, 4, 7, 2, 8, 2, 3, 6, 5, 4, 6, 2, 8, 5, 3, 2, 8, 4, 3, 4, 7, 2, 8, 4, 5, 4, 3, 4, 9, 2, 5, 6, 7, 2, 6, 2, 7, 8 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS a(n) = number of "divisor islands" of n. A divisor island is any set of consecutive divisors of a number where no pairs of consecutive divisors in the set are separated by 2 or more. - Leroy Quet, Feb 07 2010 a(n) <= A000005(n), with equality iff n is odd; a(A137922(n)) = 2. LINKS Charles R Greathouse IV, Table of n, a(n) for n = 1..10000 Eric Weisstein's World of Mathematics, Divisor Function FORMULA a(n) = A000005(n) - A129308(n). - Michel Marcus, Jan 06 2015 EXAMPLE The divisors of 30 are 1,2,3,5,6,10,15,30. The divisor islands are (1,2,3), (5,6), (10), (15), (30). (Note that the differences between consecutive divisors 5-3, 10-6, 15-10 and 30-15 are all > 1.) There are 5 such islands, so a(30)=5. MAPLE with(numtheory): disl := proc (b) local ct, j: ct := 1: for j to nops(b)-1 do if 2 <= b[j+1]-b[j] then ct := ct+1 else end if end do: ct end proc: seq(disl(divisors(n)), n = 1 .. 120); # Emeric Deutsch, Feb 12 2010 MATHEMATICA f[n_] := Length@ Split[ Divisors@n, #2 - #1 == 1 &]; Array[f, 105] (* f(n) from Bobby R. Treat *) (* Robert G. Wilson v, Feb 22 2010 *) Table[Count[Differences[Divisors[n]], _?(#>1&)]+1, {n, 110}] (* Harvey P. Dale, Jun 05 2012 *) a[n_] := DivisorSum[n, Boole[!Divisible[n, #+1]]&]; Array[a, 100] (* Jean-François Alcover, Dec 01 2015 *) PROG (PARI) a(n)=my(d, s=0); if(n%2, numdiv(n), d=divisors(n); for(i=1, #d, if(n%(d[i]+1), s++)); s) (PARI) a(n)=sumdiv(n, d, (n%(d+1)!=0)); \\ Joerg Arndt, Jan 06 2015 (Haskell) a137921 n = length \$ filter (> 0) \$    map ((mod n) . (+ 1)) [d | d <- [1..n], mod n d == 0] -- Reinhard Zumkeller, Nov 23 2011 (Python) from sympy import divisors def A137921(n): ....return len([d for d in divisors(n, generator=True) if n % (d+1)]) # Chai Wah Wu, Jan 05 2015 CROSSREFS Bisections: A099774, A174199. Cf. A000005. Sequence in context: A006374 A193677 A281855 * A064876 A262689 A319816 Adjacent sequences:  A137918 A137919 A137920 * A137922 A137923 A137924 KEYWORD nonn,nice AUTHOR Reinhard Zumkeller, Feb 23 2008 EXTENSIONS Corrected and edited by Charles R Greathouse IV, Apr 19 2010 Edited by N. J. A. Sloane, Aug 10 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 20 13:59 EDT 2019. Contains 327238 sequences. (Running on oeis4.)