login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A301957 Number of distinct subset-products of the integer partition with Heinz number n. 14
1, 1, 2, 1, 2, 2, 2, 1, 3, 2, 2, 2, 2, 2, 4, 1, 2, 3, 2, 2, 4, 2, 2, 2, 3, 2, 4, 2, 2, 4, 2, 1, 4, 2, 4, 3, 2, 2, 4, 2, 2, 4, 2, 2, 6, 2, 2, 2, 3, 3, 4, 2, 2, 4, 4, 2, 4, 2, 2, 4, 2, 2, 5, 1, 4, 4, 2, 2, 4, 4, 2, 3, 2, 2, 6, 2, 4, 4, 2, 2, 5, 2, 2, 4, 4, 2, 4, 2, 2, 6, 4, 2, 4, 2, 4, 2, 2, 3, 6, 3, 2, 4, 2, 2, 8 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

A subset-product of an integer partition y is a product of some submultiset of y. The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Number of distinct values obtained when A003963 is applied to all divisors of n. - Antti Karttunen, Sep 05 2018

LINKS

Antti Karttunen, Table of n, a(n) for n = 1..65537

Index entries for sequences computed from indices in prime factorization

EXAMPLE

The distinct subset-products of (4,2,1,1) are 1, 2, 4, and 8, so a(84) = 4.

The distinct subset-products of (6,3,2) are 1, 2, 3, 6, 12, 18, and 36, so a(195) = 7.

MATHEMATICA

Table[If[n===1, 1, Length[Union[Times@@@Subsets[Join@@Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]]]], {n, 100}]

PROG

(PARI)

up_to = 65537;

A003963(n) = { n=factor(n); n[, 1]=apply(primepi, n[, 1]); factorback(n) }; \\ From A003963

v003963 = vector(up_to, n, A003963(n));

A301957(n) = { my(m=Map(), s, k=0, c); fordiv(n, d, if(!mapisdefined(m, s = v003963[d], &c), mapput(m, s, s); k++)); (k); }; \\ Antti Karttunen, Sep 05 2018

CROSSREFS

Cf. A000712, A001055, A001227, A002865, A003963, A108917, A162247, A276024, A292886, A301854, A301855, A301856, A301970, A301979, A304793.

Sequence in context: A023588 A175242 A225843 * A318874 A001227 A060764

Adjacent sequences:  A301954 A301955 A301956 * A301958 A301959 A301960

KEYWORD

nonn

AUTHOR

Gus Wiseman, Mar 29 2018

EXTENSIONS

More terms from Antti Karttunen, Sep 05 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 19 06:30 EDT 2019. Contains 322237 sequences. (Running on oeis4.)