login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A113414 Expansion of Sum_{k>0} x^k/(1-(-x^2)^k). 2
1, 1, 0, 1, 2, 2, 0, 1, 1, 2, 0, 2, 2, 2, 0, 1, 2, 3, 0, 2, 0, 2, 0, 2, 3, 2, 0, 2, 2, 4, 0, 1, 0, 2, 0, 3, 2, 2, 0, 2, 2, 4, 0, 2, 2, 2, 0, 2, 1, 3, 0, 2, 2, 4, 0, 2, 0, 2, 0, 4, 2, 2, 0, 1, 4, 4, 0, 2, 0, 4, 0, 3, 2, 2, 0, 2, 0, 4, 0, 2, 1, 2, 0, 4, 4, 2, 0, 2, 2, 6, 0, 2, 0, 2, 0, 2, 2, 3, 0, 3, 2, 4, 0, 2, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,5

LINKS

Table of n, a(n) for n=1..105.

FORMULA

Moebius transform is period 8 sequence [1, 0, -1, 0, 1, 2, -1, 0, ...].

G.f.: Sum_{k>0} x^k/(1-(-x^2)^k) = Sum_{k>0} x^k/(1+x^(2k))+2x^(6k)/(1-x^(8k)) = Sum_{k>0} -(-1)^k x^(2k-1)/(1+(-1)^k*x^(2k-1)).

a(4n+3) = 0.

a(n) = A001826(n) + (-1)^n * A001842(n). - David Spies, Sep 26 2012

PROG

(PARI) a(n)=if(n<1, 0, sumdiv(n, d, kronecker(-4, d)+2*(n%2==0)*(d%4==3)))

(PARI) {a(n)=if(n<1, 0, if(n%4==3, 0, if(n%4==2, numdiv(n/2), if(n%4==0, sumdiv(n, d, d%2), sumdiv(n, d, (-1)^(d\2))))))}

(PARI) {a(n)=if(n<1, 0, polcoeff( sum(k=1, sqrtint(8*n+1)\2, (-1)^(k%4==2)*x^((k^2+k)/2)/(1-(-1)^(k\2)*x^k), x*O(x^n)), n))}

(PARI) {a(n)=if(n<1, 0, polcoeff( sum(k=1, n, x^k/(1-(-x^2)^k), x*O(x^n)), n))}

CROSSREFS

A001227(n) = a(2*n), A008441(n) = a(4*n+1), A099774(n) = a(4*n+2).

Sequence in context: A137581 A156311 A189463 * A112185 A192062 A172371

Adjacent sequences:  A113411 A113412 A113413 * A113415 A113416 A113417

KEYWORD

nonn

AUTHOR

Michael Somos, Oct 29 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified December 18 18:44 EST 2014. Contains 252174 sequences.