login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A113414 Expansion of Sum_{k>0} x^k/(1-(-x^2)^k). 2
1, 1, 0, 1, 2, 2, 0, 1, 1, 2, 0, 2, 2, 2, 0, 1, 2, 3, 0, 2, 0, 2, 0, 2, 3, 2, 0, 2, 2, 4, 0, 1, 0, 2, 0, 3, 2, 2, 0, 2, 2, 4, 0, 2, 2, 2, 0, 2, 1, 3, 0, 2, 2, 4, 0, 2, 0, 2, 0, 4, 2, 2, 0, 1, 4, 4, 0, 2, 0, 4, 0, 3, 2, 2, 0, 2, 0, 4, 0, 2, 1, 2, 0, 4, 4, 2, 0, 2, 2, 6, 0, 2, 0, 2, 0, 2, 2, 3, 0, 3, 2, 4, 0, 2, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,5

LINKS

Table of n, a(n) for n=1..105.

FORMULA

Moebius transform is period 8 sequence [1, 0, -1, 0, 1, 2, -1, 0, ...].

G.f.: Sum_{k>0} x^k/(1-(-x^2)^k) = Sum_{k>0} x^k/(1+x^(2k))+2x^(6k)/(1-x^(8k)) = Sum_{k>0} -(-1)^k x^(2k-1)/(1+(-1)^k*x^(2k-1)).

a(4n+3) = 0.

a(n) = A001826(n) + (-1)^n * A001842(n). - David Spies, Sep 26 2012

PROG

(PARI) a(n)=if(n<1, 0, sumdiv(n, d, kronecker(-4, d)+2*(n%2==0)*(d%4==3)))

(PARI) {a(n)=if(n<1, 0, if(n%4==3, 0, if(n%4==2, numdiv(n/2), if(n%4==0, sumdiv(n, d, d%2), sumdiv(n, d, (-1)^(d\2))))))}

(PARI) {a(n)=if(n<1, 0, polcoeff( sum(k=1, sqrtint(8*n+1)\2, (-1)^(k%4==2)*x^((k^2+k)/2)/(1-(-1)^(k\2)*x^k), x*O(x^n)), n))}

(PARI) {a(n)=if(n<1, 0, polcoeff( sum(k=1, n, x^k/(1-(-x^2)^k), x*O(x^n)), n))}

CROSSREFS

A001227(n) = a(2*n), A008441(n) = a(4*n+1), A099774(n) = a(4*n+2).

Sequence in context: A156311 A270740 A189463 * A255636 A262163 A112185

Adjacent sequences:  A113411 A113412 A113413 * A113415 A113416 A113417

KEYWORD

nonn

AUTHOR

Michael Somos, Oct 29 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 9 20:00 EST 2016. Contains 278986 sequences.