login
This site is supported by donations to The OEIS Foundation.

 

Logo

Invitation: celebrating 50 years of OEIS, 250000 sequences, and Sloane's 75th, there will be a conference at DIMACS, Rutgers, Oct 9-10 2014.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A113414 Expansion of Sum_{k>0} x^k/(1-(-x^2)^k). 2
1, 1, 0, 1, 2, 2, 0, 1, 1, 2, 0, 2, 2, 2, 0, 1, 2, 3, 0, 2, 0, 2, 0, 2, 3, 2, 0, 2, 2, 4, 0, 1, 0, 2, 0, 3, 2, 2, 0, 2, 2, 4, 0, 2, 2, 2, 0, 2, 1, 3, 0, 2, 2, 4, 0, 2, 0, 2, 0, 4, 2, 2, 0, 1, 4, 4, 0, 2, 0, 4, 0, 3, 2, 2, 0, 2, 0, 4, 0, 2, 1, 2, 0, 4, 4, 2, 0, 2, 2, 6, 0, 2, 0, 2, 0, 2, 2, 3, 0, 3, 2, 4, 0, 2, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,5

LINKS

Table of n, a(n) for n=1..105.

FORMULA

Moebius transform is period 8 sequence [1, 0, -1, 0, 1, 2, -1, 0, ...].

G.f.: Sum_{k>0} x^k/(1-(-x^2)^k) = Sum_{k>0} x^k/(1+x^(2k))+2x^(6k)/(1-x^(8k)) = Sum_{k>0} -(-1)^k x^(2k-1)/(1+(-1)^k*x^(2k-1)).

a(4n+3) = 0.

a(n) = A001826(n) + (-1)^n * A001842(n). - David Spies, Sep 26 2012

PROG

(PARI) a(n)=if(n<1, 0, sumdiv(n, d, kronecker(-4, d)+2*(n%2==0)*(d%4==3)))

(PARI) {a(n)=if(n<1, 0, if(n%4==3, 0, if(n%4==2, numdiv(n/2), if(n%4==0, sumdiv(n, d, d%2), sumdiv(n, d, (-1)^(d\2))))))}

(PARI) {a(n)=if(n<1, 0, polcoeff( sum(k=1, sqrtint(8*n+1)\2, (-1)^(k%4==2)*x^((k^2+k)/2)/(1-(-1)^(k\2)*x^k), x*O(x^n)), n))}

(PARI) {a(n)=if(n<1, 0, polcoeff( sum(k=1, n, x^k/(1-(-x^2)^k), x*O(x^n)), n))}

CROSSREFS

A001227(n) = a(2*n), A008441(n) = a(4*n+1), A099774(n) = a(4*n+2).

Sequence in context: A137581 A156311 A189463 * A112185 A192062 A172371

Adjacent sequences:  A113411 A113412 A113413 * A113415 A113416 A113417

KEYWORD

nonn

AUTHOR

Michael Somos, Oct 29 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified September 3 03:50 EDT 2014. Contains 246369 sequences.