login
A001229
Numbers k such that phi(sigma(k)) = k.
23
1, 2, 8, 12, 128, 240, 720, 6912, 32768, 142560, 712800, 1140480, 1190400, 3345408, 3571200, 5702400, 14859936, 29719872, 50319360, 118879488, 2147483648, 3889036800, 4389396480, 21946982400, 47416320000, 92177326080, 133145026560, 331914240000, 460886630400, 665725132800
OFFSET
1,2
COMMENTS
For n=0,1,2,3,4 & 5 2^(2^n-1) is in the sequence because 2^2^n+1 is prime for n=0,1,2,3 & 4 (Fermat primes). - Farideh Firoozbakht, Oct 08 2004
2987228160000, 11681629470720, and 47996928000000 are also in the sequence. - Jud McCranie, Sep 14 2024
REFERENCES
J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 128, p. 44, Ellipses, Paris 2008.
J.-M. De Koninck & A. Mercier, 1001 Problemes en Theorie Classique Des Nombres, Problem 702 pp. 92; 300-1, Ellipses Paris 2004.
R. K. Guy, Unsolved Problems in Number Theory, B42.
LINKS
Leon Alaoglu and Paul Erdős, A conjecture in elementary number theory, Bull. Amer. Math. Soc. 50 (1944), pp. 881-882.
Graeme L. Cohen, On a conjecture of Makowski and Schinzel, Colloquium Mathematicae, Vol. 74, No. 1 (1997), pp. 1-8. See Notes p. 7.
Fred W. Helenius, 664 solutions [Broken Link]
Fred W. Helenius, 664 solutions [From the Wayback machine]
T. Negadi, The genetic code invariance: when Euler and Fibonacci meet, arXiv preprint arXiv:1406.6092 [q-bio.OT], 2014; Symmetry: Culture and Science, Vol. 25, No. 3, 261-278, 2014.
Eric Weisstein's World of Mathematics, Totient Function.
FORMULA
phi(A018784), sorted. - David W. Wilson, Oct 18 2012
MATHEMATICA
Select[Range[10000], EulerPhi[DivisorSigma[1, #]] == # &] (* T. D. Noe, Jun 26 2012 *)
PROG
(PARI) is(n)=eulerphi(sigma(n))==n \\ Charles R Greathouse IV, May 15 2013
KEYWORD
nonn,changed
EXTENSIONS
More terms from David W. Wilson, Aug 15 1996 (search was complete only through a(19) = 50319360).
Jud McCranie reports Jun 15 1998 that the terms through a(24) are certain.
a(28) added. Verified sequence is complete through a(28) by Donovan Johnson, Jun 30 2012
More terms from Jud McCranie, Sep 14 2024, Sep 14 2024. Complete through 10^13.
STATUS
approved