The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A095000 E.g.f.: exp(x)/(1-x)^4. 13
 1, 5, 29, 193, 1457, 12341, 116125, 1203329, 13627073, 167525317, 2222710781, 31665408545, 482196718129, 7817359305653, 134443910166077, 2444991262876321, 46883166605035265, 945426638499719429, 20002372214708227933, 443036881445294292737, 10252840082607606694961 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Sum{k = 0..n} A094816(n,k)*x^k give A000522(n), A001339(n), A082030(n) for x = 1, 2, 3 respectively. From Peter Bala, Jul 10 2008: (Start) Recurrence relation: a(0) = 1, a(1) = 5, a(n) = (n+4)*a(n-1) - (n-1)*a(n-2) for n >= 2. Let p_3(n) = n^3+2*n-1 = n^(3)-3*n^(2)+3*n^(1)-1, where n^(k) denotes the rising factorial n*(n+1)*...*(n+k-1). The polynomial p_3(n) is an example of a Poisson-Charlier polynomial c_k(x;a) at k = 3, x = -n and a = -1. The sequence b(n) := n!*p_3(n+1) = A001565(n) satisfies the same recurrence as a(n) but with the initial conditions b(0) = 2, b(1) = 11. This leads to the finite continued fraction expansion a(n)/b(n) = 1/(2+1/(5-1/(6-2/(7-...-(n-1)/(n+4))))). Lim n -> infinity a(n)/b(n) = e/6 = 1/(2+1/(5-1/(6-2/(7-...-n/((n+5)-...))))). a(n) = -b(n) * sum {k = 0..n} 1/(k!*p_3(k)*p_3(k+1)) - since the rhs satisfies the above recurrence with the same initial conditions. Hence e = -6 * sum {k = 0..inf} 1/(k!*p_3(k)*p_3(k+1)). For sequences satisfying the more general recurrence a(n) = (n+1+r)*a(n-1) - (n-1)*a(n-2), which yield series acceleration formulas for e/r! that involve the Poisson-Charlier polynomials c_r(-n;-1), refer to A000522 (r = 0), A001339 (r=1), A082030 (r=2) and A095177 (r=4). (End) LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..200 Weisstein, Eric W., Poisson-Charlier polynomial FORMULA a(n) = Sum_{k = 0..n} A094816(n, k)*4^k . a(n) = Sum{k= 0..n} binomial(n, k)*(k+3)!/6. a(n) is a difference divisibility sequence, that is, the difference a(n) - a(m) is divisible by n - m for all n and m (provided n is not equal to m). See A000522 for further properties of difference divisibility sequences. - Peter Bala, Jul 10 2008 a(n) ~ n!*n^3*e/6. - Vaclav Kotesovec, Oct 14 2012 a(n) = hypergeom([4, -n], [], -1). - Peter Luschny, Sep 20 2014 MAPLE a := n -> hypergeom([4, -n], [], -1); seq(round(evalf(a(n), 100)), n=0..18); # Peter Luschny, Sep 20 2014 MATHEMATICA Table[n!*SeriesCoefficient[E^(x)/(1-x)^4, {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 14 2012 *) PROG (PARI) x='x+O('x^66); Vec(serlaplace(exp(x)/(1-x)^4)) \\ Joerg Arndt, May 11 2013 CROSSREFS Cf. A000522, A001339, A082030, A095177. Sequence in context: A258314 A225030 A188143 * A086672 A324962 A306932 Adjacent sequences:  A094997 A094998 A094999 * A095001 A095002 A095003 KEYWORD nonn AUTHOR Philippe Deléham, Jun 19 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 16 16:00 EST 2020. Contains 331961 sequences. (Running on oeis4.)