This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A005179 Smallest number with exactly n divisors. (Formerly M1026) 135
 1, 2, 4, 6, 16, 12, 64, 24, 36, 48, 1024, 60, 4096, 192, 144, 120, 65536, 180, 262144, 240, 576, 3072, 4194304, 360, 1296, 12288, 900, 960, 268435456, 720, 1073741824, 840, 9216, 196608, 5184, 1260, 68719476736, 786432, 36864, 1680, 1099511627776, 2880 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS A number n is called ordinary iff a(n)=A037019(n). Brown shows that the ordinary numbers have density 1 and all squarefree numbers are ordinary. See A072066 for the extraordinary or exceptional numbers. - M. F. Hasler, Oct 14 2014 Subsequence of A025487. Therefore, a(n) is even for n > 1. - David A. Corneth, Jun 23 2017 REFERENCES M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840. L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 1, p. 52. J. Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 86. N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS Don Reble, Table of n, a(n) for n = 1..2000 M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy]. R. Brown, The minimal number with a given number of divisors, Journal of Number Theory 116 (2006) 150-158. M. E. Grost, The smallest number with a given number of divisors, Amer. Math. Monthly, 75 (1968), 725-729. J. Roberts, Lure of the Integers, Annotated scanned copy of pp. 81, 86 with notes. Anna K. Savvopoulou and Christopher M. Wedrychowicz, On the smallest number with a given number of divisors, The Ramanujan Journal, 2015, Vol. 37, pp. 51-64. David Singmaster, Letter to N. J. A. Sloane, Oct 3 1982. T. Verhoeff, Rectangular and Trapezoidal Arrangements, J. Integer Sequences, Vol. 2, 1999, #99.1.6. Eric Weisstein's World of Mathematics, Divisor R. G. Wilson v, Letter to N. J. A. Sloane, Dec 17 1991. FORMULA a(p) = 2^(p-1) for primes p: a(A000040(n)) = A061286(n); a(p^2) = 6^(p-1) for primes p: a(A001248(n)) = A061234(n); a(p*q) = 2^(q-1)*3^(p-1) for primes p<=q: a(A001358(n)) = A096932(n); a(p*m*q) = 2^(q-1) * 3^(m-1) * 5^(p-1) for primes p log p_n / log 2. Unpublished proof from Andrzej Schinzel. - Thomas Ordowski, Jul 22 2005 If p is a prime and n=p^k then a(p^k)=(2*3*...*s_k)^(p-1) where (s_k) is the numbers of the form q^(p^j) for every q and j>=0, according to Grost (1968), Theorem 4. For example, if p=2 then a(2^k) is the product of the first k members of the A050376 sequence: number of the form q^(2^j) for j>=0, according to Ramanujan (1915). - Thomas Ordowski, Aug 30 2005 a(2^k) = A037992(k). - Thomas Ordowski, Aug 30 2005 MAPLE A005179_list := proc(SearchLimit, ListLength) local L, m, i, d; m := 1; L := array(1..ListLength, [seq(0, i=1..ListLength)]); for i from 1 to SearchLimit while m <= ListLength do   d := numtheory[tau](i);   if d <= ListLength and 0 = L[d] then L[d] := i;   m := m + 1; fi od: print(L) end: A005179_list(65537, 18); # If a '0' appears in the list the search limit has to be increased. - Peter Luschny, Mar 09 2011 MATHEMATICA a = Table[ 0, {43} ]; Do[ d = Length[ Divisors[ n ]]; If[ d < 44 && a[[ d ]] == 0, a[[ d]] = n], {n, 1, 1099511627776} ]; a (* Second program: *) Function[s, Map[Lookup[s, #] &, Range[First@ Complement[Range@ Max@ #, #] - 1]] &@ Keys@ s]@ Map[First, KeySort@ PositionIndex@ Table[DivisorSigma[0, n], {n, 10^7}]] (* Michael De Vlieger, Dec 11 2016, Version 10 *) PROG (PARI) {(prodR(n, maxf)=my(dfs=divisors(n), a=[], r); for(i=2, #dfs, if( dfs[i]<=maxf, if(dfs[i]==n, a=concat(a, [[n]]), r=prodR(n/dfs[i], min(dfs[i], maxf)); for(j=1, #r, a=concat(a, [concat(dfs[i], r[j])]))))); a); A005179(n)=my(pf=prodR(n, n), a=1, b); for(i=1, #pf, b=prod(j=1, length(pf[i]), prime(j)^(pf[i][j]-1)); if(b

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 19 21:28 EDT 2019. Contains 328244 sequences. (Running on oeis4.)