

A140824


Expansion of (xx^3)/(13*x+2*x^23*x^3+x^4).


1



0, 1, 3, 6, 15, 41, 108, 281, 735, 1926, 5043, 13201, 34560, 90481, 236883, 620166, 1623615, 4250681, 11128428, 29134601, 76275375, 199691526, 522799203, 1368706081, 3583319040, 9381251041, 24560434083, 64300051206, 168339719535, 440719107401, 1153817602668
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,3


COMMENTS

Case P1 = 3, P2 = 0, Q = 1 of the 3 parameter family of 4thorder linear divisibility sequences found by Williams and Guy.  Peter Bala, Mar 25 2014


LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000
Peter Bala, Linear divisibility sequences and Chebyshev polynomials
H. C. Williams and R. K. Guy, Some fourthorder linear divisibility sequences, Intl. J. Number Theory 7 (5) (2011) 12551277.
H. C. Williams and R. K. Guy, Some Monoapparitic Fourth Order Linear Divisibility Sequences, Integers, Volume 12A (2012) The John Selfridge Memorial Volume
Index entries for linear recurrences with constant coefficients, signature (3,2,3,1).


FORMULA

a(0) = 0, a(1) = 1, a(2) = 3, a(3) = 6, a(n)  3 a(n + 1) + 2 a(n + 2)  3 a(n + 3) + a(n + 4) = 0.
From Peter Bala, Mar 25 2014: (Start)
a(n) = 2/3*( T(n,3/2)  T(n,0) ), where T(n,x) is a Chebyshev polynomial of the first kind.
a(n) = 1/3 * (A005248(n)  (i^n + (i)^n)) = 1/3 * (Fibonacci(2*n1) + Fibonacci(2*n+1)  (i^n + (i)^n)).
a(n) = bottom left entry of the 2 X 2 matrix 2*T(n, 1/2*M), where M is the 2 X 2 matrix [0, 0; 1, 3].
The o.g.f. is the Hadamard product of the rational functions x/(1  1/sqrt(2)*(sqrt(5) + i)*x + x^2) and x/(1  1/sqrt(2)*(sqrt(5)  i)*x + x^2). See the remarks in A100047 for the general connection between Chebyshev polynomials and 4thorder linear divisibility sequences. (End)
a(n) = A099483(n)  A099483(n2).  R. J. Mathar, Feb 10 2016


MATHEMATICA

LinearRecurrence[{3, 2, 3, 1}, {0, 1, 3, 6}, 50] (* G. C. Greubel, Aug 08 2017 *)


PROG

(PARI) x='x+O('x^50); concat([0], Vec((xx^3)/(13*x+2*x^23*x^3+x^4))) \\ G. C. Greubel, Aug 08 2017


CROSSREFS

Cf. A006238, A005248, A054493, A078070, A092184, A098306, A100047, A100048, A108196, A138573, A152090, A218134.
Sequence in context: A098701 A218777 A152799 * A001433 A005368 A067771
Adjacent sequences: A140821 A140822 A140823 * A140825 A140826 A140827


KEYWORD

nonn,easy


AUTHOR

N. J. A. Sloane, Sep 07 2009, based on email from R. K. Guy, Mar 09 2009


STATUS

approved



