login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A140824 Expansion of (x-x^3)/(1-3*x+2*x^2-3*x^3+x^4). 1
0, 1, 3, 6, 15, 41, 108, 281, 735, 1926, 5043, 13201, 34560, 90481, 236883, 620166, 1623615, 4250681, 11128428, 29134601, 76275375, 199691526, 522799203, 1368706081, 3583319040, 9381251041, 24560434083, 64300051206, 168339719535, 440719107401, 1153817602668 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Case P1 = 3, P2 = 0, Q = 1 of the 3 parameter family of 4th-order linear divisibility sequences found by Williams and Guy. - Peter Bala, Mar 25 2014

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

Peter Bala, Linear divisibility sequences and Chebyshev polynomials

H. C. Williams and R. K. Guy, Some fourth-order linear divisibility sequences, Intl. J. Number Theory 7 (5) (2011) 1255-1277.

H. C. Williams and R. K. Guy, Some Monoapparitic Fourth Order Linear Divisibility Sequences, Integers, Volume 12A (2012) The John Selfridge Memorial Volume

Index entries for linear recurrences with constant coefficients, signature (3,-2,3,-1).

FORMULA

a(0) = 0, a(1) = 1, a(2) = 3, a(3) = 6, a(n) - 3 a(n + 1) + 2 a(n + 2) - 3 a(n + 3) + a(n + 4) = 0.

From Peter Bala, Mar 25 2014: (Start)

a(n) = 2/3*( T(n,3/2) - T(n,0) ), where T(n,x) is a Chebyshev polynomial of the first kind.

a(n) = 1/3 * (A005248(n) - (i^n + (-i)^n)) = 1/3 * (Fibonacci(2*n-1) + Fibonacci(2*n+1) - (i^n + (-i)^n)).

a(n) = bottom left entry of the 2 X 2 matrix 2*T(n, 1/2*M), where M is the 2 X 2 matrix [0, 0; 1, 3].

The o.g.f. is the Hadamard product of the rational functions x/(1 - 1/sqrt(2)*(sqrt(5) + i)*x + x^2) and x/(1 - 1/sqrt(2)*(sqrt(5) - i)*x + x^2). See the remarks in A100047 for the general connection between Chebyshev polynomials and 4th-order linear divisibility sequences. (End)

a(n) = A099483(n) - A099483(n-2). - R. J. Mathar, Feb 10 2016

MATHEMATICA

LinearRecurrence[{3, -2, 3, -1}, {0, 1, 3, 6}, 50] (* G. C. Greubel, Aug 08 2017 *)

PROG

(PARI) x='x+O('x^50); concat([0], Vec((x-x^3)/(1-3*x+2*x^2-3*x^3+x^4))) \\ G. C. Greubel, Aug 08 2017

CROSSREFS

Cf. A006238, A005248, A054493, A078070, A092184, A098306, A100047, A100048, A108196, A138573, A152090, A218134.

Sequence in context: A098701 A218777 A152799 * A001433 A005368 A067771

Adjacent sequences:  A140821 A140822 A140823 * A140825 A140826 A140827

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane, Sep 07 2009, based on email from R. K. Guy, Mar 09 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 24 04:00 EDT 2019. Contains 322406 sequences. (Running on oeis4.)