

A007478


Dimension of primitive Vassiliev knot invariants of order n.
(Formerly M0688)


4



1, 1, 1, 1, 2, 3, 5, 8, 12, 18, 27, 39, 55
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,5


REFERENCES

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).


LINKS

Table of n, a(n) for n=0..12.
D. BarNatan, On the Vassiliev Knot Invariants, Topology 34 (1995) 423472.
D. BarNatan, Bibliography of Vassiliev Invariants.
Birman, Joan S., New points of view in knot theory (amstex), Bull. Amer. Math. Soc. (N.S.) 28 (1993), no. 2, 253287.
D. J. Broadhurst, Conjectured enumeration of Vassiliev invariants.
S. Chmutov and S. Duzhin, A lower bound for the number of Vassiliev knot invariants, Topology and its Applications, Volume 92, Number 3, 14 April 1999, pp. 201223(23).
Jan Kneissler, The number of primitive Vassiliev invariants of degree up to 12
T. Ohtsuki (ed.), Problems on invariants of knots and 3manifolds, arXiv:math/0406190 [math.GT], (2004); see Table 2 on p.407.
Index entries for sequences related to knots


FORMULA

Broadhurst gives a conjectured g.f.
Lim [n > infinity] a(n) = n log n [Chmutov and Duzhin]  Jonathan Vos Post, Jul 24 2008


CROSSREFS

Cf. A014605, A050504.
Sequence in context: A136275 A328170 A078408 * A014605 A232477 A232478
Adjacent sequences: A007475 A007476 A007477 * A007479 A007480 A007481


KEYWORD

hard,more,nonn,nice


AUTHOR

N. J. A. Sloane.


EXTENSIONS

Next term is at least 78 (Jan Kneissler jk(AT)math.unibonn.de 9/97)


STATUS

approved



