login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A007476 Shifts 2 places left under binomial transform.
(Formerly M1192)
12
1, 1, 1, 2, 4, 9, 23, 65, 199, 654, 2296, 8569, 33825, 140581, 612933, 2795182, 13298464, 65852873, 338694479, 1805812309, 9963840219, 56807228074, 334192384460, 2026044619017, 12642938684817, 81118550133657, 534598577947465, 3615474317688778 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

Starting (1, 2, 4, 9, 23, ...) = row sums of triangle A153859. - Gary W. Adamson, Jan 02 2009

Binomial transform of the sequence starting (1, 1, 2, 4, 9, ...) = first differences of (1, 2, 4, 9, 13, ...); that is, (1, 2, 5, 14, 42, 134, 455, 1642, ...). - Gary W. Adamson, May 20 2013

Row sums of triangle A256161. - Margaret A. Readdy, Mar 16 2015

RG-words corresponding to set partitions of {1, ..., n} with every even entry appearing exactly once. - Margaret A. Readdy, Mar 16 2015

REFERENCES

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

T. D. Noe, Table of n, a(n) for n = 0..100

M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]

M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]

Yue Cai and Margaret Readdy, Negative q-Stirling numbers, arXiv:1506.03249 [math.CO], 2015.

A. Claesson and T. Mansour, Permutations avoiding a pair of Babson-Steingrimsson patterns, arXiv:math/0107044 [math.CO], 2001-2010.

N. J. A. Sloane, Transforms

L. Sze, OEIS conjecture 70

FORMULA

G.f.: Sum_{k>=0} x^(2k)/(Product_{m=0..k-1} (1-mx) * Product_{m=0..k+1} (1-mx)).

G.f. A(x) satisfies A(x) = 1 + x + (x^2/(1-x))*A(x/(1-x)). - Vladimir Kruchinin, Nov 28 2011

a(n) = A000994(n) + A000995(n). - Peter Bala, Jan 27 2015

MAPLE

a:= proc(n) option remember; `if`(n<2, 1,

      add(a(j)*binomial(n-2, j), j=0..n-2))

    end:

seq(a(n), n=0..31);  # Alois P. Heinz, Jul 29 2019

MATHEMATICA

a[0] = a[1] = 1; a[n_] := a[n] = Sum[Binomial[n-2, k] a[k], {k, 0, n-2}]; Table[a[n], {n, 0, 24}] (* Jean-Fran├žois Alcover, Aug 08 2012, after Ralf Stephan *)

PROG

(PARI) a(n)=if(n<2, 1, sum(k=0, n-2, binomial(n-2, k)*a(k))) /* Ralf Stephan; corrected by Manuel Blum, May 22 2010 */

CROSSREFS

Cf. A000994, A000995, A153859.

Sequence in context: A245160 A245161 A245162 * A202552 A272301 A129698

Adjacent sequences:  A007473 A007474 A007475 * A007477 A007478 A007479

KEYWORD

nonn,eigen,nice

AUTHOR

N. J. A. Sloane

EXTENSIONS

Spelling correction by Jason G. Wurtzel, Aug 22 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 20 11:11 EST 2020. Contains 331083 sequences. (Running on oeis4.)