OFFSET
1,2
COMMENTS
Also number of domino tilings of the 7 X (2n-1) rectangle with upper left corner removed. - Alois P. Heinz, Apr 14 2011
A linear divisibility sequence of order 8; a(n) divides a(m) whenever n divides m. It is the product of a 2nd-order Lucas sequence and a 4th-order linear divisibility sequence. - Peter Bala, Apr 27 2014
REFERENCES
F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Ars Combin. 49 (1998), 129-154.
LINKS
T. D. Noe, Table of n, a(n) for n = 1..200
F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Preliminary version of paper that appeared in Ars Combin. 49 (1998), 129-154.
F. Faase, Results from the counting program
P. Raff, Spanning Trees in Grid Graphs, arXiv:0809.2551 [math.CO], 2008.
P. Raff, Analysis of the Number of Spanning Trees of P_4 x P_n. Contains sequence, recurrence, generating function, and more.
Roettger, E. L.; Williams, H. C.; Guy, R. K., Some extensions of the Lucas functions, Springer Proceedings in Mathematics & Statistics 43, 271-311 (2013), chapter 5.
Index entries for linear recurrences with constant coefficients, signature (56, -672, 2632, -4094, 2632, -672, 56, -1).
FORMULA
a(1) = 1,
a(2) = 56,
a(3) = 2415,
a(4) = 100352,
a(5) = 4140081,
a(6) = 170537640,
a(7) = 7022359583,
a(8) = 289143013376 and
a(n) = 56a(n-1) - 672a(n-2) + 2632a(n-3) - 4094a(n-4) + 2632a(n-5) - 672a(n-6) + 56a(n-7) - a(n-8).
G.f.: x(x^6-49x^4+112x^3-49x^2+1) / (x^8-56x^7 +672x^6-2632x^5 +4094x^4 -2632x^3 +672x^2-56x+1). - Paul Raff, Mar 06 2009
From Peter Bala, Apr 27 2014: (Start)
a(n) = Resultant( U(3,(x-4)/2),U(n-1,x/2) ), where U(n,x) denotes the Chebyshev polynomial of the second kind. The polynomial U(3,(x-4)/2) = x^3 - 12*x^2 + 46*x - 56 (see A159764) has zeros z_1 = 4, z_2 = 4 + sqrt(2) and z_3 = 4 - sqrt(2). Hence a(n) = U(n-1,2)*U(n-1,1/2*(4 + sqrt(2)))*U(n-1,1/2*(4 - sqrt(2))).
a(n) = (9/3968)*(A028469(n+3)-A028469(n-4)) - (497/3968)*(A028469(n+2)-A028469(n-3)) + (5687/3968)*(A028469(n+1)-A028469(n-2)) - (19983/3968)*(A028469(n)-A028469(n-1)), n>3. - Sergey Perepechko, May 02 2016
a(n) = -a(-n) for all n in Z. - Michael Somos, Oct 31 2022
MAPLE
seq(resultant(simplify(ChebyshevU(3, (x-4)*(1/2))), simplify(ChebyshevU(n-1, (1/2)*x)), x), n = 1 .. 14); # Peter Bala, Apr 27 2014
MATHEMATICA
LinearRecurrence[{56, -672, 2632, -4094, 2632, -672, 56, -1}, {1, 56, 2415, 100352, 4140081, 170537640, 7022359583, 289143013376}, 20] (* Jean-François Alcover, Feb 28 2020 *)
PROG
(PARI) {a(n) = polresultant((x-4)*(x^2-8*x+14), polchebyshev(n-1, 2, x/2))}; /* Michael Somos, Oct 31 2022 */
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Added recurrence from Faase's web page. - N. J. A. Sloane, Feb 03 2009
STATUS
approved