login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A003696
Number of spanning trees in P_4 X P_n.
8
1, 56, 2415, 100352, 4140081, 170537640, 7022359583, 289143013376, 11905151192865, 490179860527896, 20182531537581071, 830989874753525760, 34214941811800329425, 1408756312731277540744
OFFSET
1,2
COMMENTS
Also number of domino tilings of the 7 X (2n-1) rectangle with upper left corner removed. - Alois P. Heinz, Apr 14 2011
A linear divisibility sequence of order 8; a(n) divides a(m) whenever n divides m. It is the product of a 2nd-order Lucas sequence and a 4th-order linear divisibility sequence. - Peter Bala, Apr 27 2014
REFERENCES
F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Ars Combin. 49 (1998), 129-154.
LINKS
F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Preliminary version of paper that appeared in Ars Combin. 49 (1998), 129-154.
P. Raff, Spanning Trees in Grid Graphs, arXiv:0809.2551 [math.CO], 2008.
P. Raff, Analysis of the Number of Spanning Trees of P_4 x P_n. Contains sequence, recurrence, generating function, and more.
Roettger, E. L.; Williams, H. C.; Guy, R. K., Some extensions of the Lucas functions, Springer Proceedings in Mathematics & Statistics 43, 271-311 (2013), chapter 5.
Index entries for linear recurrences with constant coefficients, signature (56, -672, 2632, -4094, 2632, -672, 56, -1).
FORMULA
a(1) = 1,
a(2) = 56,
a(3) = 2415,
a(4) = 100352,
a(5) = 4140081,
a(6) = 170537640,
a(7) = 7022359583,
a(8) = 289143013376 and
a(n) = 56a(n-1) - 672a(n-2) + 2632a(n-3) - 4094a(n-4) + 2632a(n-5) - 672a(n-6) + 56a(n-7) - a(n-8).
G.f.: x(x^6-49x^4+112x^3-49x^2+1) / (x^8-56x^7 +672x^6-2632x^5 +4094x^4 -2632x^3 +672x^2-56x+1). - Paul Raff, Mar 06 2009
From Peter Bala, Apr 27 2014: (Start)
a(n) = Resultant( U(3,(x-4)/2),U(n-1,x/2) ), where U(n,x) denotes the Chebyshev polynomial of the second kind. The polynomial U(3,(x-4)/2) = x^3 - 12*x^2 + 46*x - 56 (see A159764) has zeros z_1 = 4, z_2 = 4 + sqrt(2) and z_3 = 4 - sqrt(2). Hence a(n) = U(n-1,2)*U(n-1,1/2*(4 + sqrt(2)))*U(n-1,1/2*(4 - sqrt(2))).
a(n) = A001353(n)*A161158(n-1). (End)
a(n) = (9/3968)*(A028469(n+3)-A028469(n-4)) - (497/3968)*(A028469(n+2)-A028469(n-3)) + (5687/3968)*(A028469(n+1)-A028469(n-2)) - (19983/3968)*(A028469(n)-A028469(n-1)), n>3. - Sergey Perepechko, May 02 2016
a(n) = -a(-n) for all n in Z. - Michael Somos, Oct 31 2022
MAPLE
seq(resultant(simplify(ChebyshevU(3, (x-4)*(1/2))), simplify(ChebyshevU(n-1, (1/2)*x)), x), n = 1 .. 14); # Peter Bala, Apr 27 2014
MATHEMATICA
LinearRecurrence[{56, -672, 2632, -4094, 2632, -672, 56, -1}, {1, 56, 2415, 100352, 4140081, 170537640, 7022359583, 289143013376}, 20] (* Jean-François Alcover, Feb 28 2020 *)
PROG
(PARI) {a(n) = polresultant((x-4)*(x^2-8*x+14), polchebyshev(n-1, 2, x/2))}; /* Michael Somos, Oct 31 2022 */
CROSSREFS
A row of A116469. - N. J. A. Sloane, May 27 2012
Bisection of A189004. - Alois P. Heinz, Sep 20 2012
Sequence in context: A280803 A124101 A198948 * A199709 A205227 A376228
KEYWORD
nonn,easy
EXTENSIONS
Added recurrence from Faase's web page. - N. J. A. Sloane, Feb 03 2009
STATUS
approved