OFFSET
1,2
COMMENTS
a(n) is the number of generalized compositions of n when there are i^2+i-1 different types of i, (i = 1, 2, ...). - Milan Janjic, Sep 24 2010
Is this the same as the sequence visible in Table 5 of Pettersson, 2014? - N. J. A. Sloane, Jun 05 2015
REFERENCES
F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Ars Combin. 49 (1998), 129-154.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..1000
W. K. Alt, Enumeration of Domino Tilings on the Projective Grid Graph, A Thesis Presented to The Division of Mathematics and Natural Sciences, Reed College, May 2013.
F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Preliminary version of paper that appeared in Ars Combin. 49 (1998), 129-154.
F. Faase, Results from the counting program
Ville H. Pettersson, Enumerating Hamiltonian Cycles, The Electronic Journal of Combinatorics, Volume 21, Issue 4, 2014.
Index entries for linear recurrences with constant coefficients, signature (4,-1).
FORMULA
a(n) = 2 * A001835(n), n > 1.
From Benoit Cloitre, Mar 28 2003: (Start)
a(n) = ceiling((1 - sqrt(1/3))*(2 + sqrt(3))^n) for n > 1.
a(1) = 1, a(2) = 6, a(3) = 22 and for n > 3, a(n) = 4*a(n-1) - a(n-2). (End)
O.g.f.: x*(1 + 2*x - x^2)/(1-4*x+x^2) = -2 - x + 2*(1 - 3*x)/(1-4*x+x^2). - R. J. Mathar, Nov 23 2007
From Franck Maminirina Ramaharo, Nov 12 2018: (Start)
a(n) = ((1 + sqrt(3))*(2 - sqrt(3))^n - (1 - sqrt(3))*(2 + sqrt(3))^n)/sqrt(3), n > 1.
E.g.f.: ((1 + sqrt(3))*exp((2 - sqrt(3))*x) - (1 - sqrt(3))*exp((2 + sqrt(3))*x) - (2 + x)*sqrt(3))/sqrt(3). (End)
a(n) = 2*(ChebyshevU(n-1, 2) - ChebyshevU(n-2, 2)) for n >1, with a(1)=1. - G. C. Greubel, Dec 23 2019
MAPLE
seq( simplify( `if`(n=1, 1, 2*(ChebyshevU(n-1, 2) - ChebyshevU(n-2, 2))) ), n=1..30); # G. C. Greubel, Dec 23 2019
MATHEMATICA
Join[{1}, LinearRecurrence[{4, -1}, {6, 22}, 30]] (* Harvey P. Dale, Jul 19 2011 *)
Table[If[n<2, n, 2*(ChebyshevU[n-1, 2] - ChebyshevU[n-2, 2])], {n, 30}] (* G. C. Greubel, Dec 23 2019 *)
PROG
(Maxima) (a[1] : 1, a[2] : 6, a[3] : 22, a[n] := 4*a[n - 1] - a[n - 2], makelist(a[n], n, 1, 50)); /* Franck Maminirina Ramaharo, Nov 12 2018 */
(Magma) I:=[1, 6, 22]; [n le 3 select I[n] else 4*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 13 2018
(PARI) vector(30, n, if(n==1, 1, 2*(polchebyshev(n-1, 2, 2) - polchebyshev(n-2, 2, 2))) ) \\ G. C. Greubel, Dec 23 2019
(Sage) [1]+[2*(chebyshev_U(n-1, 2) - chebyshev_U(n-2, 2)) for n in (2..30)] # G. C. Greubel, Dec 23 2019
(GAP) a:=[6, 22];; for n in [3..20] do a[n]:=4a[n-1]-a[n-2]; od; Concatenation([1], a); # G. C. Greubel, Dec 23 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved