

A001961


A Beatty sequence: floor(n * (sqrt(5)  1)).
(Formerly M0540 N0192)


6



1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 16, 17, 18, 19, 21, 22, 23, 24, 25, 27, 28, 29, 30, 32, 33, 34, 35, 37, 38, 39, 40, 42, 43, 44, 45, 46, 48, 49, 50, 51, 53, 54, 55, 56, 58, 59, 60, 61, 63, 64, 65, 66, 67, 69, 70, 71, 72, 74, 75, 76, 77, 79, 80, 81, 82, 84
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

upile positions of the 4Wythoff game with parameter i=0 (Connell nomenclature).  R. J. Mathar, Feb 14 2011


REFERENCES

Wen An Liu and Xiao Zhao, Adjoining to (s,t)Wythoff's game its Ppositions as moves, Discrete Applied Mathematics, 27 August 2014; DOI: 10.1016/j.dam.2014.08.009. See Table 1.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).


LINKS

T. D. Noe, Table of n, a(n) for n = 1..10000
Ian G. Connell, A generalization of Wythoff's game, Canad. Math. Bull. 2 (1959) 181190
A. S. Fraenkel, How to beat your Wythoff games' opponent on three fronts, Amer. Math. Monthly, 89 (1982), 353361 (the case a=4)
Index entries for sequences related to Beatty sequences


MATHEMATICA

Table[Floor[n*(Sqrt[5]  1)], {n, 100}] (* T. D. Noe, Aug 17 2012 *)


CROSSREFS

Complement of A001962.
Sequence in context: A115180 A045774 A045681 * A020656 A039116 A047201
Adjacent sequences: A001958 A001959 A001960 * A001962 A001963 A001964


KEYWORD

nonn


AUTHOR

N. J. A. Sloane.


EXTENSIONS

Missing right parenthesis in description corrected May 15 1995.


STATUS

approved



