login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A002133 Number of partitions of n with exactly two part sizes.
(Formerly M1324 N0507)
17
0, 0, 1, 2, 5, 6, 11, 13, 17, 22, 27, 29, 37, 44, 44, 55, 59, 68, 71, 81, 82, 102, 97, 112, 109, 136, 126, 149, 141, 168, 157, 188, 176, 212, 182, 231, 207, 254, 230, 266, 241, 300, 259, 319, 283, 344, 295, 373, 311, 386, 352, 417, 353, 452, 368, 460, 418, 492, 413 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,4

COMMENTS

Also number of solutions to the Diophantine equation ab + bc + cd = n, with a,b,c >= 1. - N. J. A. Sloane, Jun 17 2011

A generalized sum of divisors function.

REFERENCES

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Alois P. Heinz, Table of n, a(n) for n = 1..10000

George E. Andrews, Stacked lattice boxes, Ann. Comb. 3 (1999), 115-130. See L_3(n).

E. T. Bell, The form wx+xy+yz+zu, Bull. Amer. Math. Soc., 42 (1936), 377-380.

D. Christopher, T. Nadu, Partitions with Fixed Number of Sizes, Journal of Integer Sequences, 15 (2015), #15.11.5.

W. J. Keith, Partitions into a small number of part sizes, Int. Jour. of Num. Thy., Vol 13 no. 1, 229-241 (2017), doi:10.1142/S1793042117500130

P. A. MacMahon, Divisors of numbers and their continuations in the theory of partitions, Proc. London Math. Soc., 19 (1921), 75-113; Coll. Papers II, pp. 303-341.

N. Benyahia Tani, S. Bouroubi, O. Kihel, An effective approach for integer partitions using exactly two distinct sizes of parts, Bulletin du Laboratoire, 03 (2015) 18-27.

N. B. Tani and S. Bouroubi, Enumeration of the Partitions of an Integer into Parts of a Specified Number of Different Sizes and Especially Two Sizes, J. Integer Seqs., Vol. 14 (2011), #11.3.6. (This sequence appears as the rightmost column of Table 1 on p. 10.)

FORMULA

G.f.: Sum_{i>=1} Sum_{j=1..i-1} x^(i+j)/((1-x^i)*(1-x^j)). - Emeric Deutsch, Mar 30 2006

Andrews gives a formula which is programmed up in the Maple code below. - N. J. A. Sloane, Jun 17 2011

G.f.: (G(x)^2-H(x))/2 where G(x) = Sum_{k>0} x^k/(1-x^k) and H(x) = Sum_{k>0} x^(2*k)/(1-x^k)^2. More generally, we obtain g.f. for number of partitions of n with m types of parts if we substitute x(i) with -Sum_{k>0}(x^n/(x^n-1))^i in cycle index Z(S(m); x(1),x(2),...,x(m)) of symmetric group S(m) of degree m. - Vladeta Jovovic, Sep 18 2007

EXAMPLE

a(8) = 13 because we have 71, 62, 611, 53, 5111, 422, 41111, 332, 3311, 311111, 22211, 221111, 2111111.

MAPLE

g:=sum(sum(x^(i+j)/(1-x^i)/(1-x^j), j=1..i-1), i=1..80): gser:=series(g, x=0, 65): seq(coeff(gser, x^n), n=1..60); # Emeric Deutsch, Mar 30 2006

with(numtheory); D00:=n->add(tau(j)*tau(n-j), j=1..n-1); L3:=n->(D00(n)+tau(n)-sigma(n))/2; [seq(L3(n), n=1..60)]; # N. J. A. Sloane, Jun 17 2011

MATHEMATICA

nn=50; ss=Sum[Sum[x^(i+j)/(1-x^i)/(1-x^j), {j, 1, i-1}], {i, 1, nn}]; Drop[CoefficientList[Series[ss, {x, 0, nn}], x], 1]  (* Geoffrey Critzer, Sep 13 2012 *)

CROSSREFS

A diagonal of A060177.

Cf. A002134.

Sequence in context: A030130 A164874 A045845 * A092306 A319242 A323398

Adjacent sequences:  A002130 A002131 A002132 * A002134 A002135 A002136

KEYWORD

nonn,look,easy

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 20 07:27 EDT 2019. Contains 321345 sequences. (Running on oeis4.)