login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A002248 Number of points on y^2+xy=x^3+x^2+x over GF(2^n). 2
2, 8, 14, 16, 22, 56, 142, 288, 518, 968, 1982, 4144, 8374, 16472, 32494, 65088, 131174, 263144, 525086, 1047376, 2094358, 4193912, 8393806, 16783200, 33550022, 67092488, 134210174, 268460656, 536911222 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

This is a divisibility sequence; that is, if n divides m, then a(n) divides a(m). The point at infinity is counted also. [From T. D. Noe, Mar 12 2009]

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..1000

Hugh Williams, R. K. Guy, Some fourth-order linear divisibility sequences, Intl. J. Number Theory vol. 7 (5) (2011) 1255-1277

Index to divisibility sequences

Index entries for linear recurrences with constant coefficients, signature (4,-7,8,-4).

FORMULA

a(n) = 2^n + 1 - b(n), b(n)=b(n-1)-2*b(n-2), b(1)=1, b(2)=-3. b(n)=A002249(n).

G.f.: -2*x*(-1+2*x^2) / ( (x-1)*(2*x-1)*(2*x^2-x+1) ).

a(n) = 4*a(n-1) -7*a(n-2) +8*a(n-3) -4*a(n-4). Vincenzo Librandi, Jun 18 2012

MATHEMATICA

Needs["FiniteFields`"]; Table[cnt=1; (* 1 point at infinity *) f=Table[GF[2, n][IntegerDigits[i, 2, n]], {i, 0, 2^n-1}]; Do[If[y^2+x*y-x^3-x^2-x==0, cnt++ ], {x, f}, {y, f}]; cnt, {n, 6}] [From T. D. Noe, Mar 12 2009]

LinearRecurrence[{4, -7, 8, -4}, {2, 8, 14, 16}, 30] (* Vincenzo Librandi, Jun 18 2012 *)

PROG

(MAGMA) I:=[2, 8, 14, 16]; [n le 4 select I[n] else 4*Self(n-1)-7*Self(n-2)+8*Self(n-3)-4*Self(n-4): n in [1..45]]; // Vincenzo Librandi, Jun 18 2012

CROSSREFS

Sequence in context: A077241 A228469 A066567 * A194278 A050619 A056715

Adjacent sequences:  A002245 A002246 A002247 * A002249 A002250 A002251

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane, Iwan Duursma

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 18 12:21 EST 2017. Contains 294891 sequences.