login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A038862
Numbers ending with '7' that are the difference of two positive cubes.
1
7, 37, 117, 127, 217, 387, 397, 547, 657, 817, 1027, 1197, 1267, 1387, 1647, 1657, 1727, 2107, 2437, 2457, 2717, 2977, 3087, 3367, 3997, 4167, 4447, 4697, 4977, 5167, 5677, 5707, 6327, 6347, 6487, 6517, 7057, 7317, 7657, 7957, 8587, 8937, 9197, 9317
OFFSET
1,1
LINKS
MAPLE
filter:= proc(n) local t, y, r;
for t in sort(convert(numtheory:-divisors(n), list)) do
r:= 12*n*t-3*t^4;
if r < 0 then return false fi;
if not issqr(r) then next fi;
y:= (sqrt(r)-3*t^2)/(6*t);
if y::posint then return true fi
od;
false
end proc:
select(filter, [seq(i, i=7..10000, 10)]); # Robert Israel, Aug 08 2019
MATHEMATICA
With[{nn=60}, Select[Union[#[[2]]-#[[1]]&/@Subsets[Range[nn]^3, {2}]], Mod[#, 10] == 7&&#<nn^3-(nn-1)^3&]] (* Harvey P. Dale, Jan 12 2022 *)
CROSSREFS
Cf. A181123.
Sequence in context: A106064 A369061 A282001 * A136204 A139891 A082113
KEYWORD
nonn,base
AUTHOR
EXTENSIONS
Name corrected by Robert Israel, Aug 08 2019
STATUS
approved