login
A139891
Primes of the form 7x^2+30y^2.
1
7, 37, 127, 277, 373, 463, 487, 613, 757, 823, 877, 967, 1087, 1093, 1117, 1213, 1303, 1327, 1423, 1453, 1597, 1663, 1933, 2053, 2143, 2293, 2437, 2503, 2557, 2647, 2767, 2797, 3343, 3607, 3613, 3637, 3733, 3823, 3847, 3943, 4327, 4447
OFFSET
1,1
COMMENTS
Discriminant=-840. See A139827 for more information.
LINKS
Vincenzo Librandi and Ray Chandler, Table of n, a(n) for n = 1..10000 [First 1000 terms from Vincenzo Librandi]
N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
FORMULA
The primes are congruent to {7, 37, 127, 247, 253, 277, 373, 463, 487, 583, 613, 757, 823} (mod 840).
MATHEMATICA
QuadPrimes2[7, 0, 30, 10000] (* see A106856 *)
PROG
(Magma) [ p: p in PrimesUpTo(5000) | p mod 840 in {7, 37, 127, 247, 253, 277, 373, 463, 487, 583, 613, 757, 823}]; // Vincenzo Librandi, Jul 30 2012
CROSSREFS
Sequence in context: A282001 A038862 A136204 * A082113 A196597 A143991
KEYWORD
nonn,easy
AUTHOR
T. D. Noe, May 02 2008
STATUS
approved