OFFSET
0,3
COMMENTS
The terms of the sequence are highly divisible by the primes 2,5 and 7. This is because it is trying to tell us the local heights at the primes where the point [ -18,70 ] has singular reduction on the elliptic curve [ 0,0,0,-412,3316 ].
The elliptic curve "280b1" is y^2 = x^3 - 412 * x + 3316. - Michael Somos, Feb 12 2012
LINKS
FORMULA
a(2n+1) = a(n+2)*a(n)^3-a(n-1)*a(n+1)^3, a(2*n) = a(n)*(a(n+2)*a(n-1)^2-a(n-2)*a(n+1)^2)/a(2).
a(-n) = -a(n). a(n+2)*a(n-2) = 19600 * a(n+1)*a(n-1) + 1372000 * a(n)^2. a(n+3)*a(n-2) = -1372000 * a(n+2)*a(n-1) + 1920800000 * a(n+1)*a(n). - Michael Somos, Feb 12 2012
CROSSREFS
KEYWORD
easy,sign
AUTHOR
Graham Everest (g.everest(AT)uea.ac.uk), Jan 12 2001
STATUS
approved