login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A189788
Base-10 lunar factorials: a(n) = (lunar) Product_{i=1..n} i.
1
9, 1, 1, 1, 1, 1, 1, 1, 1, 1, 10, 110, 1110, 11110, 111110, 1111110, 11111110, 111111110, 1111111110, 11111111110, 111111111100, 1111111111100, 11111111111100, 111111111111100, 1111111111111100, 11111111111111100, 111111111111111100, 1111111111111111100, 11111111111111111100, 111111111111111111100, 1111111111111111111000
OFFSET
0,1
COMMENTS
0!, the empty product, equals 9 (the multiplicative identity) by convention.
LINKS
D. Applegate, M. LeBrun and N. J. A. Sloane, Dismal Arithmetic, arXiv:1107.1130 [math.NT], 2011. [Note: we have now changed the name from "dismal arithmetic" to "lunar arithmetic" - the old name was too depressing]
D. Applegate, M. LeBrun and N. J. A. Sloane, Dismal Arithmetic, J. Int. Seq. 14 (2011) # 11.9.8.
EXAMPLE
4! = 1 X 2 X 3 X 4 = 1, where X is lunar multiplication, A087062.
PROG
(PARI) apply( A189788(n)=if(n>9, for(k=10, n-1, n=A087062(n, k)); n, 9^!n), [0..30]) \\ M. F. Hasler, Nov 15 2018
(Python) # uses lunar_mul and lunar_add from A087062
from functools import reduce
def a(n): return reduce(lunar_mul, [9]+list(range(1, n+1)))
print([a(n) for n in range(31)]) # Michael S. Branicky, Sep 01 2021
(Python) # uses lunar_mul and lunar_add from A087062
from itertools import accumulate
def aupton(nn): return list(accumulate([9]+list(range(1, nn+1)), lunar_mul))
print(aupton(30)) # Michael S. Branicky, Sep 01 2021
CROSSREFS
Cf. A087062 (lunar product), A087019 (lunar squares).
Sequence in context: A266557 A010534 A078297 * A264981 A370240 A113061
KEYWORD
nonn,base
AUTHOR
N. J. A. Sloane, May 23 2011
EXTENSIONS
a(0) = 9 prepended and minor edits by M. F. Hasler, Nov 15 2018
STATUS
approved