

A007293


Dimension of space of weight systems of chord diagrams.
(Formerly M2356)


5



1, 0, 1, 1, 3, 4, 9, 14, 27, 44, 80, 132, 232
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,5


REFERENCES

Birman, Joan S. "New points of view in knot theory." Bulletin of the American Mathematical Society 28.2 (1993): 253287.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).


LINKS

Table of n, a(n) for n=0..12.
D. BarNatan, On the Vassiliev Knot Invariants, Topology 34 (1995) 423472.
D. BarNatan, Bibliography of Vassiliev Invariants.
J. S. Birman, Letter to N. J. A. Sloane, Apr 09 1994
D. J. Broadhurst, Conjectured enumeration of Vassiliev invariants.
Jan Kneissler, The number of primitive Vassiliev invariants of degree up to 12
T. Ohtsuki (ed.), Problems on invariants of knots and 3manifolds, arXiv:math/0406190 [math.GT], (2004); see Table 3 on p.408.
Evert Stenlund, On the Vassiliev Invariants, June 2017.
S. D. Tyurina, Diagram invariants of knots and the Kontsevich integral, J. Math. Sci. 134 (2) (2006) 20172017, Table 1.
Index entries for sequences related to knots


FORMULA

Broadhurst gives a conjectured g.f.


CROSSREFS

Cf. A007473, A007478.
Cf. A014596.
Sequence in context: A333333 A095292 A263821 * A014596 A002823 A109509
Adjacent sequences: A007290 A007291 A007292 * A007294 A007295 A007296


KEYWORD

nonn,more


AUTHOR

N. J. A. Sloane.


EXTENSIONS

Description corrected by Sergei Duzhin, Aug 29 2000


STATUS

approved



