The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A061013 Numbers k such that (product of digits of k) is divisible by (sum of digits of k), where 0's are not permitted. 4
 1, 2, 3, 4, 5, 6, 7, 8, 9, 22, 36, 44, 63, 66, 88, 123, 132, 138, 145, 154, 159, 167, 176, 183, 189, 195, 198, 213, 224, 231, 235, 242, 246, 253, 257, 264, 268, 275, 279, 286, 297, 312, 318, 321, 325, 333, 345, 347, 352, 354, 357, 369, 374, 375, 381, 396, 415 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Called "perfect years". 1998 and 2114 are the nearest past and future examples. REFERENCES H. Herles, Reformstau, Gefuehlsstau, Verkehrsstau. Generalanzeiger, 12/31/1997, p. V. H. Muller-Merbach and L. Logelix, Perfekte Jahre, Technologie und Management, Vol. 42, 1993, No. 1, p. 47 and No. 2, p. 95. LINKS H. Muller-Merbach, Wunsche für das "perfekte Jahr" 1998 EXAMPLE 1998 is perfect since 1*9*9*8/(1+9+9+8) = 24. MAPLE for n from 1 to 3000 do a := convert(n, base, 10):s := add(a[i], i=1..nops(a)):p := mul(a[i], i=1..nops(a)): if p<>0 and p mod s=0 then printf(`%d, `, n):fi:od: MATHEMATICA Select[Range[415], FreeQ[x = IntegerDigits[#], 0] && Divisible[Times @@ x, Plus @@ x] &] (* Jayanta Basu, Jul 13 2013 *) CROSSREFS See A038367 for case where 0 digits are allowed. Cf. A055931. Sequence in context: A108194 A083158 A254956 * A037264 A274124 A045910 Adjacent sequences:  A061010 A061011 A061012 * A061014 A061015 A061016 KEYWORD easy,nonn,base AUTHOR Heiner Muller-Merbach (hmm(AT)sozwi.uni-kl.de), Jun 06 2001 EXTENSIONS More terms from Larry Reeves (larryr(AT)acm.org) and Vladeta Jovovic, Jun 07 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 26 22:09 EDT 2020. Contains 334632 sequences. (Running on oeis4.)