login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A027377 Number of irreducible polynomials of degree n over GF(4); dimensions of free Lie algebras. 18
1, 4, 6, 20, 60, 204, 670, 2340, 8160, 29120, 104754, 381300, 1397740, 5162220, 19172790, 71582716, 268431360, 1010580540, 3817733920, 14467258260, 54975528948, 209430785460, 799644629550, 3059510616420 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Apart from initial terms, exponents in expansion of A065419 as a product zeta(n)^(-a(n)).

Number of aperiodic necklaces with n beads of 4 colors. - Herbert Kociemba, Nov 25 2016

REFERENCES

E. R. Berlekamp, Algebraic Coding Theory, McGraw-Hill, NY, 1968, p. 84.

M. Lothaire, Combinatorics on Words. Addison-Wesley, Reading, MA, 1983, p. 79.

LINKS

T. D. Noe, Table of n, a(n) for n = 0..200

E. N. Gilbert and J. Riordan, Symmetry types of periodic sequences, Illinois J. Math., 5 (1961), 657-665.

G. Niklasch, Some number theoretical constants: 1000-digit values [Cached copy]

A. Pakapongpun, T. Ward, Functorial Orbit counting, JIS 12 (2009) 09.2.4, example 3.

Y. Puri and T. Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs., Vol. 4 (2001), #01.2.1.

G. Viennot, Algèbres de Lie Libres et Monoïdes Libres, Lecture Notes in Mathematics 691, Springer Verlag 1978.

Index entries for sequences related to Lyndon words

FORMULA

a(n) = Sum_{d|n} mu(d)*4^(n/d)/n.

G.f.: k=4, 1 - Sum_{i>=1} mu(i)*log(1 - k*x^i)/i. - Herbert Kociemba, Nov 25 2016

MAPLE

A027377 := proc(n) local d, s; if n = 0 then RETURN(1); else s := 0; for d in divisors(n) do s := s+mobius(d)*4^(n/d); od; RETURN(s/n); fi; end;

MATHEMATICA

a[n_] := Sum[MoebiusMu[d]*4^(n/d), {d, Divisors[n]}] / n; a[0] = 1; Table[a[n], {n, 0, 23}](* Jean-François Alcover, Nov 29 2011 *)

mx=40; f[x_, k_]:=1-Sum[MoebiusMu[i] Log[1-k*x^i]/i, {i, 1, mx}]; CoefficientList[Series[f[x, 4], {x, 0, mx}], x] (* Herbert Kociemba, Nov 25 2016 *)

PROG

(PARI) a(n)=if(n, sumdiv(n, d, moebius(d)<<(2*n/d))/n, 1) \\ Charles R Greathouse IV, Nov 29 2011

CROSSREFS

Cf. A001037, A027376, A054719.

Column k=4 of A074650.

Sequence in context: A079435 A227959 A088015 * A048789 A038069 A143391

Adjacent sequences:  A027374 A027375 A027376 * A027378 A027379 A027380

KEYWORD

nonn,nice,easy

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified September 21 15:34 EDT 2017. Contains 292314 sequences.