login
A046015
Discriminants of imaginary quadratic fields with class number 18 (negated).
3
335, 519, 527, 679, 1135, 1172, 1207, 1383, 1448, 1687, 1691, 1927, 2047, 2051, 2167, 2228, 2291, 2315, 2344, 2644, 2747, 2859, 3035, 3107, 3543, 3544, 3651, 3688, 4072, 4299, 4307, 4568, 4819, 4883, 5224, 5315, 5464, 5492, 5539, 5899
OFFSET
1,1
COMMENTS
The class group of Q[sqrt(-d)] is isomorphic to C_3 X C_6 for d = 9748, 12067, 16627, 17131, 19651, 22443, 23683, 34027, 34507. For all other known d in this sequence, the class group of Q[sqrt(-d)] is isomorphic to C_18. - Jianing Song, Dec 01 2019
LINKS
Steven Arno, M. L. Robinson and Ferrel S. Wheeler, Imaginary quadratic fields with small odd class number, Acta Arithm. 83.4 (1998), 295-330
Duncan A. Buell, Small class numbers and extreme values of L-functions of quadratic fields, Math. Comp., 31 (1977), 786-796.
C. Wagner, Class Number 5, 6 and 7, Math. Comput. 65, 785-800, 1996.
Eric Weisstein's World of Mathematics, Class Number.
MATHEMATICA
Reap[ For[n = 1, n < 6000, n++, s = Sqrt[-n]; If[ NumberFieldClassNumber[s] == 18, d = -NumberFieldDiscriminant[s]; Print[d]; Sow[d]]]][[2, 1]] // Union (* Jean-François Alcover, Oct 05 2012 *)
KEYWORD
nonn,fini
STATUS
approved