login
A119760
a(1) = 335; a(n) is the smallest k > a(n-1) such that k*A002110(n)^30 - 1 is prime.
1
335, 339, 368, 396, 406, 471, 474, 566, 693, 754, 955, 1345, 1637, 1750, 1841, 1999, 2334, 2569, 2720, 3016, 3157, 3300, 3315, 3495, 3639, 4861, 5018, 5344, 5419, 5517, 6671, 6970, 7378, 7783, 7973, 8109, 8289, 8651, 10610, 10976
OFFSET
1,1
MATHEMATICA
a = {335}; For[n = 2, n < 41, n++, k = a[[ -1]] + 1; While[ !PrimeQ[ k*Product[Prime[i], {i, 1, n}]^30 - 1], k++ ]; AppendTo[a, k]]; a
CROSSREFS
Cf. A119759.
Sequence in context: A303209 A216138 A252995 * A046015 A184076 A253227
KEYWORD
hard,nonn
AUTHOR
Pierre CAMI, Jun 18 2006
EXTENSIONS
Edited and corrected by Stefan Steinerberger, Aug 13 2007
STATUS
approved