OFFSET
1,4
FORMULA
a(n,k) | sum(j=1..n-1,l=1,2,...) a(j,l). a(n,k) > a(n,k-1). a(n,1)=1. - R. J. Mathar, Jun 23 2006
EXAMPLE
Array begins:
1
1
1,2
1,5
1,11
1,23
1,47
1,5,19,95
The sum of these terms is 215.
Since the divisors 215 are 1,5,43 and 215, row 9 =(1,5,43,215).
MAPLE
A119763 := proc(nmax) local a, dvs; a := [1] ; while nops(a) < nmax do dvs := numtheory[divisors](sum('a[i]', i=1..nops(a))) ; a := [op(a), op(dvs) ] ; od ; end: a := A119763(200) ; for i from 1 to nops(a) do printf("%d, ", a[i]) ; od ; # R. J. Mathar, Jun 23 2006
MATHEMATICA
Module[{arr={1}}, Do[AppendTo[arr, Divisors[Total[arr]]]; arr=Flatten[arr], {20}]; arr] (* Harvey P. Dale, May 27 2012 *)
PROG
(PLT Scheme) ;; positive-divisors gives the list of divisors of n in decreasing order
(define (A119763 n seq)
(cond
[(= n 0) seq]
[else (A119763 (sub1 n) (append seq (reverse (positive-divisors (apply + seq)))))]))
(A119763 20 (list 1)) ;; Joshua Zucker, Jun 21 2006
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Leroy Quet, Jun 18 2006
EXTENSIONS
More terms from Joshua Zucker and R. J. Mathar, Jun 21 2006
STATUS
approved