login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A046018
Discriminants of imaginary quadratic fields with class number 21 (negated).
7
431, 503, 743, 863, 1931, 2503, 2579, 2767, 2819, 3011, 3371, 4283, 4523, 4691, 5011, 5647, 5851, 5867, 6323, 6691, 7907, 8059, 8123, 8171, 8243, 8387, 8627, 8747, 9091, 9187, 9811, 9859, 10067, 10771, 11731, 12107, 12547, 13171, 13291
OFFSET
1,1
COMMENTS
85 discriminants in this sequence (proved).
LINKS
Giovanni Resta, Table of n, a(n) for n = 1..85 (full sequence, from Weisstein's World of Mathematics)
Steven Arno, M. L. Robinson, Ferrell S. Wheeler, Imaginary quadratic fields with small odd class number, Acta Arith. 83 (1998) 295-330.
Duncan A. Buell, Small class numbers and extreme values of L-functions of quadratic fields, Math. Comp., 31 (1977), 786-796.
C. Wagner, Class Number 5, 6 and 7, Math. Comput. 65, 785-800, 1996.
Eric Weisstein's World of Mathematics, Class Number.
MATHEMATICA
Reap[ For[n = 1, n < 14000, n++, s = Sqrt[-n]; If[ NumberFieldClassNumber[s] == 21, d = -NumberFieldDiscriminant[s]; Print[d]; Sow[d]]]][[2, 1]] // Union (* Jean-François Alcover, Oct 05 2012 *)
CROSSREFS
KEYWORD
nonn,fini,full
STATUS
approved