login
A046018
Discriminants of imaginary quadratic fields with class number 21 (negated).
7
431, 503, 743, 863, 1931, 2503, 2579, 2767, 2819, 3011, 3371, 4283, 4523, 4691, 5011, 5647, 5851, 5867, 6323, 6691, 7907, 8059, 8123, 8171, 8243, 8387, 8627, 8747, 9091, 9187, 9811, 9859, 10067, 10771, 11731, 12107, 12547, 13171, 13291
OFFSET
1,1
COMMENTS
85 discriminants in this sequence (proved).
LINKS
Giovanni Resta, Table of n, a(n) for n = 1..85 (full sequence, from Weisstein's World of Mathematics)
Steven Arno, M. L. Robinson, Ferrell S. Wheeler, Imaginary quadratic fields with small odd class number, Acta Arith. 83 (1998) 295-330.
Duncan A. Buell, Small class numbers and extreme values of L-functions of quadratic fields, Math. Comp., 31 (1977), 786-796.
C. Wagner, Class Number 5, 6 and 7, Math. Comput. 65, 785-800, 1996.
Eric Weisstein's World of Mathematics, Class Number.
MATHEMATICA
Reap[ For[n = 1, n < 14000, n++, s = Sqrt[-n]; If[ NumberFieldClassNumber[s] == 21, d = -NumberFieldDiscriminant[s]; Print[d]; Sow[d]]]][[2, 1]] // Union (* Jean-François Alcover, Oct 05 2012 *)
CROSSREFS
KEYWORD
nonn,fini,full
STATUS
approved