login
A007474
Number of circular chord diagrams with n chords, up to rotational symmetry.
(Formerly M1800)
10
1, 0, 1, 2, 7, 36, 300, 3218, 42335, 644808, 11119515, 213865382, 4537496680, 105270612952, 2651295555949, 72042968876506, 2100886276796969, 65446290562491916, 2169090198219290966, 76211647261082309466, 2829612806029873399561
OFFSET
0,4
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Dror Bar-Natan, On the Vassiliev Knot Invariants, Topology 34 (1995) 423-472.
E. Krasko, A. Omelchenko, Enumeration of Chord Diagrams without Loops and Parallel Chords, arXiv preprint arXiv:1601.05073 [math.CO], 2016.
E. Krasko, A. Omelchenko, Enumeration of Chord Diagrams without Loops and Parallel Chords, The Electronic Journal of Combinatorics, 24(3) (2017), #P3.43.
MATHEMATICA
m = 20; Clear[M]; M[_, _] = 0; Mget[n_, k_] := Which[n < 0, 0, n == 0, 1, n == 1, 1 - Mod[k, 2], n == 2, k - Mod[k, 2], True, M[n, k]]; Mset[n_, k_, v_] := (M[n, k] = v); Minit[] = (tmp = 0; For[n = 3, n <= 2*m, n++, For[k = 1, k <= 2*m, k++, tmp = If[Mod[k, 2] == 1, k*(n-1)*Mget[n-2, k] + Mget[n-4, k], Mget[n-1, k] + k*(n-1) * Mget[n-2, k] - Mget[n-3, k] + Mget[n-4, k]]; Mset[n, k, tmp]]]; ); a[n_] := DivisorSum[2*n, EulerPhi[#] * (Mget[2*n/#, #] - Mget[2*n/# - 2, #])&] / (2*n); Minit[]; Prepend[ Array[a, m], 1] (* Jean-François Alcover, Apr 24 2017, after Gheorghe Coserea *)
PROG
(PARI)
N = 20; M = matrix(2*N, 2*N);
Mget(n, k) = { if (n<0, 0, n==0, 1, n==1, 1-(k%2), n==2, k-(k%2), M[n, k]) };
Mset(n, k, v) = { M[n, k] = v; };
Minit() = {
my(tmp = 0);
for (n=3, 2*N, for(k=1, 2*N,
tmp = if (k%2, k*(n-1) * Mget(n-2, k) + Mget(n-4, k),
Mget(n-1, k) + k*(n-1) * Mget(n-2, k) - Mget(n-3, k) + Mget(n-4, k));
Mset(n, k, tmp)));
};
a(n) = sumdiv(2*n, d, eulerphi(d) * (Mget(2*n/d, d) - Mget(2*n/d-2, d))) / (2*n);
Minit();
concat(1, vector(N, n, a(n))) \\ Gheorghe Coserea, Dec 10 2016
CROSSREFS
Sequence in context: A012363 A012717 A072236 * A002724 A348106 A292206
KEYWORD
nonn,nice
STATUS
approved