login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A007474 Number of circular chord diagrams with n chords, up to rotational symmetry.
(Formerly M1800)
2
1, 0, 1, 2, 7, 36, 300, 3218, 42335, 644808, 11119515, 213865382, 4537496680, 105270612952, 2651295555949, 72042968876506, 2100886276796969, 65446290562491916, 2169090198219290966, 76211647261082309466, 2829612806029873399561 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

REFERENCES

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Gheorghe Coserea, Table of n, a(n) for n = 0..300

Dror Bar-Natan, On the Vassiliev Knot Invariants, Topology 34 (1995) 423-472.

D. Bar-Natan, Bibliography of Vassiliev Invariants

E. Krasko, A. Omelchenko, Enumeration of Chord Diagrams without Loops and Parallel Chords, arXiv preprint arXiv:1601.05073 [math.CO], 2016.

E. Krasko, A. Omelchenko, Enumeration of Chord Diagrams without Loops and Parallel Chords, The Electronic Journal of Combinatorics, 24(3) (2017), #P3.43.

MATHEMATICA

m = 20; Clear[M]; M[_, _] = 0; Mget[n_, k_] := Which[n < 0, 0, n == 0, 1, n == 1, 1 - Mod[k, 2], n == 2, k - Mod[k, 2], True, M[n, k]]; Mset[n_, k_, v_] := (M[n, k] = v); Minit[] = (tmp = 0; For[n = 3, n <= 2*m, n++, For[k = 1, k <= 2*m, k++, tmp = If[Mod[k, 2] == 1, k*(n-1)*Mget[n-2, k] + Mget[n-4, k], Mget[n-1, k] + k*(n-1) * Mget[n-2, k] - Mget[n-3, k] + Mget[n-4, k]]; Mset[n, k, tmp]]]; ); a[n_] := DivisorSum[2*n, EulerPhi[#] * (Mget[2*n/#, #] - Mget[2*n/# - 2, #])&] / (2*n); Minit[]; Prepend[ Array[a, m], 1] (* Jean-Fran├žois Alcover, Apr 24 2017, after Gheorghe Coserea *)

PROG

(PARI)

N = 20; M = matrix(2*N, 2*N);

Mget(n, k) = { if (n<0, 0, n==0, 1, n==1, 1-(k%2), n==2, k-(k%2), M[n, k]) };

Mset(n, k, v) = { M[n, k] = v; };

Minit() = {

  my(tmp = 0);

  for (n=3, 2*N, for(k=1, 2*N,

    tmp = if (k%2, k*(n-1) * Mget(n-2, k) + Mget(n-4, k),

    Mget(n-1, k) + k*(n-1) * Mget(n-2, k) - Mget(n-3, k) + Mget(n-4, k));

    Mset(n, k, tmp)));

};

a(n) = sumdiv(2*n, d, eulerphi(d) * (Mget(2*n/d, d) - Mget(2*n/d-2, d))) / (2*n);

Minit();

concat(1, vector(N, n, a(n)))  \\ Gheorghe Coserea, Dec 10 2016

CROSSREFS

Sequence in context: A012363 A012717 A072236 * A002724 A292206 A203900

Adjacent sequences:  A007471 A007472 A007473 * A007475 A007476 A007477

KEYWORD

nonn,nice

AUTHOR

N. J. A. Sloane.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 6 04:14 EST 2019. Contains 329784 sequences. (Running on oeis4.)