The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A007430 Inverse Moebius transform applied thrice to natural numbers. (Formerly M3750) 5
 1, 5, 6, 16, 8, 30, 10, 42, 24, 40, 14, 96, 16, 50, 48, 99, 20, 120, 22, 128, 60, 70, 26, 252, 46, 80, 82, 160, 32, 240, 34, 219, 84, 100, 80, 384, 40, 110, 96, 336, 44, 300, 46, 224, 192, 130, 50, 594, 76, 230, 120, 256, 56, 410, 112, 420, 132, 160, 62, 768, 64, 170, 240, 466, 128, 420 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Equals row sums of triangle A140704. - Gary W. Adamson, May 24 2008 a(n) = A000027(n) * A000012(n) * A000012(n) * A000012(n) = A000027(n) * A000012(n) * A000005(n) = A000203(n) * A000005(n) = A000203(n) * A000012(n) * A000012(n) = A007429(n) * A000012(n), where operation * denotes Dirichlet convolution for n >= 1. Dirichlet convolution of functions b(n), c(n) is function a(n) = b(n) * c(n) = Sum_{d|n} b(d)*c(n/d). - Jaroslav Krizek, Mar 20 2009 REFERENCES N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS T. D. Noe, Table of n, a(n) for n=1..10000 O. Bordelles, Mean values of generalized gcd-sum and lcm-sum functions, JIS 10 (2007) 07.9.2, sequence g_5. N. J. A. Sloane, Transforms FORMULA a(n) = Sum_{d|n} sigma(d)*tau(n/d). - Benoit Cloitre, Mar 03 2004 Multiplicative with a(p^e) = Sum_{k=0..e} binomial(e-k+2, e-k)*p^k. Dirichlet g.f.: zeta(s-1)*zeta^3(s). Row sums of triangle A134676. - Gary W. Adamson, Nov 05 2007 Sum_{k=1..n} a(k) ~ Pi^6 * n^2 / 432. - Vaclav Kotesovec, Nov 06 2018 MAPLE with(numtheory); A007430:=proc(q) local a, b, c, j, k, n; for n from 1 to q do a:=divisors(n); c:=0; for k from 1 to nops(a) do b:=divisors(a[k]);   c:=c+add(sigma(b[j]), j=1..nops(b)); od;  print(c); od; end: A007430(10^6); # Paolo P. Lava, May 07 2013 MATHEMATICA a[n_] := Total[ DivisorSigma[1, #]*DivisorSigma[0, n/#]& /@ Divisors[n]]; Table[a[n], {n, 1, 50}] (* Jean-François Alcover, Nov 15 2011 *) PROG (PARI) a(n)=sumdiv(n, d, sigma(d)*numdiv(n/d)) (PARI) a(n)=if(n<1, 0, direuler(p=2, n, 1/(1-X)^3/(1-p*X))[n]) /* Ralf Stephan */ (PARI) a(n)=sumdiv(n, x, sumdiv(x, y, sumdiv(y, z, z ) ) ); /* Joerg Arndt, Oct 07 2012 */ (Haskell) a007430 n = sum \$ zipWith (*) (map a000005 ds) (map a000203 \$ reverse ds)             where ds = a027750_row n -- Reinhard Zumkeller, Aug 02 2014 CROSSREFS Cf. A134676, A140704, A000005, A000203, A027750. Sequence in context: A019070 A019071 A028285 * A118712 A130878 A104422 Adjacent sequences:  A007427 A007428 A007429 * A007431 A007432 A007433 KEYWORD nonn,easy,nice,mult AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 27 16:47 EDT 2020. Contains 334664 sequences. (Running on oeis4.)