login
This site is supported by donations to The OEIS Foundation.

 

Logo

Invitation: celebrating 50 years of OEIS, 250000 sequences, and Sloane's 75th, there will be a conference at DIMACS, Rutgers, Oct 9-10 2014.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A030628 1 together with numbers of the form p*q^4 and p^9, where p and q are primes. 10
1, 48, 80, 112, 162, 176, 208, 272, 304, 368, 405, 464, 496, 512, 567, 592, 656, 688, 752, 848, 891, 944, 976, 1053, 1072, 1136, 1168, 1250, 1264, 1328, 1377, 1424, 1539, 1552, 1616, 1648, 1712, 1744, 1808, 1863, 1875, 2032, 2096, 2192, 2224, 2349, 2384 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Also 1 together with numbers with 10 divisors. Also numbers n such that product of all proper divisors of n equals n^4.

If M(n) denotes the product of all divisors of n, then n is said to be k-multiplicatively perfect if M(n)=n^k. All such numbers are of the form p*q^(k-1) or p^(2k-1). The sequence A030628 is therefore 5-multiplicatively perfect. See the Links for A007422. - Walter Kehowski, Sep 13 2005

REFERENCES

D. M. Burton, Elementary Number Theory, Allyn and Bacon Inc., Boston, MA, 1976. p. 119.

David Wells, The Penguin Dictionary of Curious and Interesting Numbers, entry for 48, page 106, 1997.

LINKS

R. J. Mathar, Table of n, a(n) for n = 1..1000

Eric Weisstein's World of Mathematics, Divisor Product

FORMULA

Union A178739 U A179665 {1}. - R. J. Mathar, Apr 03 2011

MAPLE

with(numtheory): k:=5: MPL:=[]: for z from 1 to 1 do for n from 1 to 5000 do if convert(divisors(n), `*`) = n^k then MPL:=[op(MPL), n] fi od; od; MPL; (Kehowski)

MATHEMATICA

Join[{1}, Select[Range[6000], DivisorSigma[0, #]==10&]] (* Vladimir Joseph Stephan Orlovsky, May 05 2011 *)

PROG

(PARI) {v=[]; for(n=1, 500, v=concat(v, if(numdiv(n)==10, n, ", ")); ); v} - Jason Earls Jun 18 2001

(PARI) list(lim)=my(v=List([1]), t); forprime(p=2, (lim\2+.5)^(1/4), t=p^4; forprime(q=2, lim\t, if(p==q, next); listput(v, t*q))); forprime(p=2, (lim+.5)^(1/9), listput(v, p^9)); vecsort(Vec(v)) \\ Charles R Greathouse IV, Apr 26 2012

CROSSREFS

Cf. A030515, A030627, A030629.

Sequence in context: A143722 A110229 A108608 * A178739 A065911 A211722

Adjacent sequences:  A030625 A030626 A030627 * A030629 A030630 A030631

KEYWORD

nonn,easy,nice

AUTHOR

Jeff Burch

EXTENSIONS

Better description from Sharon Sela (sharonsela(AT)hotmail.com), Dec 23, 2001

More terms from Walter Kehowski, Sep 13 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified September 18 07:51 EDT 2014. Contains 246896 sequences.