login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A210424
Number of 2-divided words of length n over a 4-letter alphabet.
2
0, 0, 6, 40, 186, 816, 3396, 14040, 57306, 233000, 943608, 3813000, 15378716, 61946640, 249260316, 1002158880, 4026527706, 16169288640, 64901712996, 260410648680, 1044535993800, 4188615723280, 16792541033556, 67309233561240, 269746851976156
OFFSET
1,3
COMMENTS
See A210109 for further information.
It appears that A027377 gives the number of 2-divided words that have a unique division into two parts. - David Scambler, Mar 21 2012
From R. J. Mathar, Mar 25 2012: (Start)
Row sums of the following table which shows how many words of length n over a 4-letter alphabet are 2-divided in k>=1 different ways:
6;
20, 20;
60, 66, 60;
204, 204, 204, 204;
670, 690, 676, 690, 670;
2340, 2340, 2340, 2340, 2340, 2340;
8160, 8220, 8160, 8226, 8160, 8220, 8160;
First column of the following triangle which shows how many words of length n over a 4-letter alphabet are k-divided:
6;
40, 4;
186, 60, 1;
816, 374, 44, 0;
3396, 1960, 450, 12, 0;
14040, 9103, 3175, 275, 0, 0;
57306, 40497, 17977, 2915, 66, 0, 0;
233000, 174127, 91326, 22243, 1318,..
(End)
FORMULA
a(n) = 4^n - A001868(n) (see A209970 for proof).
CROSSREFS
KEYWORD
nonn,more
AUTHOR
N. J. A. Sloane, Mar 21 2012
EXTENSIONS
a(1)-a(10) computed by R. J. Mathar, Mar 20 2012
a(13) onwards from N. J. A. Sloane, Mar 21 2012
STATUS
approved