login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A038367 Numbers n with property that (product of digits of n) is divisible by (sum of digits of n). 5
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 22, 30, 36, 40, 44, 50, 60, 63, 66, 70, 80, 88, 90, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 120, 123, 130, 132, 138, 140, 145, 150, 154, 159, 160, 167, 170, 176, 180, 183, 189, 190, 195, 198, 200, 201, 202, 203 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Equal to the disjoint union of A061013 and A011540 \ {0}. Contains in particular all positive single-digit integers, those with a digit 0, and 22*{1,...,18}. If x is in the sequence, any digit-permutation of x is also in the sequence. - M. F. Hasler, Feb 28 2018

LINKS

Iain Fox, Table of n, a(n) for n = 1..10000

MATHEMATICA

okQ[n_]:=Module[{idn=IntegerDigits[n]}, Divisible[Times@@idn, Total[idn]]]

Select[Range[500], okQ] (* Harvey P. Dale, Nov 24 2010 *)

PROG

(MAGMA) [0] cat [n: n in [1..250] | IsIntegral(&*Intseq(n)/&+Intseq(n))]; // Bruno Berselli, Feb 09 2016

(PARI) is(n)=n&&prod(i=1, #n=digits(n), n[i])%vecsum(n)==0 \\ M. F. Hasler, Feb 28 2018

CROSSREFS

See A061013 for case where 0 digits are excluded. Cf. A055931.

Sequence in context: A032889 A009995 A190219 * A214958 A161350 A108652

Adjacent sequences:  A038364 A038365 A038366 * A038368 A038369 A038370

KEYWORD

nonn,base,easy

AUTHOR

Felice Russo

EXTENSIONS

Corrected by Vladeta Jovovic and Larry Reeves (larryr(AT)acm.org), Jun 08 2001

Erroneous 0 term removed by David A. Corneth, Jun 05 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 21 06:40 EST 2019. Contains 320371 sequences. (Running on oeis4.)