This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A005038 Number of nonequivalent dissections of a polygon into n pentagons by nonintersecting diagonals up to rotation.. (Formerly M2026) 6
 1, 1, 2, 12, 57, 366, 2340, 16252, 115940, 854981, 6444826, 49554420, 387203390, 3068067060, 24604111560, 199398960212, 1631041938108, 13451978877748, 111765327780200, 934774244822704, 7865200653146905 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS Also, with a different offset, number of colored quivers in the 3-mutation class of a quiver of Dynkin type A_n. - N. J. A. Sloane, Jan 22 2013 REFERENCES N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS G. C. Greubel, Table of n, a(n) for n = 1..1000 F. Harary, E. M. Palmer, R. C. Read, On the cell-growth problem for arbitrary polygons, computer printout, circa 1974 F. Harary, E. M. Palmer and R. C. Read, On the cell-growth problem for arbitrary polygons, Discr. Math. 11 (1975), 371-389. Hermund A. Torkildsen, Colored quivers of type A and the cell-growth problem, arXiv:1004.4512 [math.RT], 2010. Hermund A. Torkildsen, Colored quivers of type A and the cell-growth problem, J. Algebra and Applications, 12 (2013), #1250133. - From N. J. A. Sloane, Jan 22 2013 FORMULA a(n) ~ 2^(8*n + 1/2) / (sqrt(Pi) * n^(5/2) * 3^(3*n + 5/2)). - Vaclav Kotesovec, Mar 13 2016 MATHEMATICA p=5; Table[Binomial[(p-1)n, n]/(((p-2)n+1)((p-2)n+2)) +If[OddQ[n], 0, Binomial[(p-1)n/2, n/2]/((p-2)n+2)]+Plus @@ Map[EulerPhi[ # ]Binomial[((p-1)n+1)/#, (n-1)/# ]/((p-1)n+1)&, Complement[Divisors[GCD[p, n-1]], {1}]], {n, 1, 20}] (* Robert A. Russell, Dec 11 2004 *) CROSSREFS Column k=5 of A295224. Cf. A001683, A005034. Sequence in context: A180073 A067125 A177782 * A094780 A268594 A100103 Adjacent sequences:  A005035 A005036 A005037 * A005039 A005040 A005041 KEYWORD nonn AUTHOR EXTENSIONS a(21) corrected by Sean A. Irvine, Mar 11 2016 Name edited by Andrew Howroyd, Nov 20 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 20 07:33 EDT 2019. Contains 328252 sequences. (Running on oeis4.)