login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A005036 Number of nonequivalent dissections of a polygon into n quadrilaterals by nonintersecting diagonals up to rotation and reflection.
(Formerly M1491)
5
1, 1, 2, 5, 16, 60, 261, 1243, 6257, 32721, 175760, 963900, 5374400, 30385256, 173837631, 1004867079, 5861610475, 34469014515, 204161960310, 1217145238485, 7299007647552, 44005602441840 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

The subsequence of primes begins: 2, 5, 6257, no more through a(100). - Jonathan Vos Post, Apr 08 2011

Closed formula is given in my paper linked below. - Nikos Apostolakis, Aug 01 2018

REFERENCES

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

T. D. Noe, Table of n, a(n) for n = 1..100

Nikos Apostolakis, Non-crossing trees, quadrangular dissections, ternary trees, and duality preserving bijections, arXiv:1807.11602 [math.CO], July 2018.

F. Harary, E. M. Palmer, R. C. Read, On the cell-growth problem for arbitrary polygons, computer printout, circa 1974

F. Harary, E. M. Palmer and R. C. Read, On the cell-growth problem for arbitrary polygons, Discr. Math. 11 (1975), 371-389.

E. V. Konstantinova, A survey of the cell-growth problem and some its variations, Com 2 MaC-KOSEF, 2001.

Index entries for "core" sequences

FORMULA

a(n) ~ 3^(3*n + 1/2) / (sqrt(Pi) * n^(5/2) * 2^(2*n + 4)). - Vaclav Kotesovec, Mar 13 2016

MATHEMATICA

p=4; Table[(Binomial[(p-1)n, n]/(((p-2)n+1)((p-2)n+2)) + If[OddQ[n], If[OddQ[p], Binomial[(p-1)n/2, (n-1)/2]/n, (p+1)Binomial[((p-1)n-1)/2, (n-1)/2]/((p-2)n+2)], 3Binomial[(p-1)n/2, n/2]/((p-2)n+2)]+Plus @@ Map[EulerPhi[ # ]Binomial[((p-1)n+1)/#, (n-1)/# ]/((p-1)n+1)&, Complement[Divisors[GCD[p, n-1]], {1, 2}]])/2, {n, 1, 20}] (* Robert A. Russell, Dec 11 2004 *)

CROSSREFS

Column k=4 of A295260.

Cf. A005419, A004127, A005038, A005040, A000207.

Sequence in context: A205486 A210668 A279564 * A012051 A012159 A009736

Adjacent sequences:  A005033 A005034 A005035 * A005037 A005038 A005039

KEYWORD

core,nonn,nice

AUTHOR

N. J. A. Sloane

EXTENSIONS

More terms from Sascha Kurz, Oct 13 2001

Name edited by Andrew Howroyd, Nov 20 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 11 07:47 EST 2019. Contains 329914 sequences. (Running on oeis4.)