login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A005036 Number of nonequivalent dissections of a polygon into n quadrilaterals by nonintersecting diagonals up to rotation and reflection.
(Formerly M1491)
5
1, 1, 2, 5, 16, 60, 261, 1243, 6257, 32721, 175760, 963900, 5374400, 30385256, 173837631, 1004867079, 5861610475, 34469014515, 204161960310, 1217145238485, 7299007647552, 44005602441840 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

The subsequence of primes begins: 2, 5, 6257, no more through a(100). - Jonathan Vos Post, Apr 08 2011

REFERENCES

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

T. D. Noe, Table of n, a(n) for n = 1..100

F. Harary, E. M. Palmer, R. C. Read, On the cell-growth problem for arbitrary polygons, computer printout, circa 1974

F. Harary, E. M. Palmer and R. C. Read, On the cell-growth problem for arbitrary polygons, Discr. Math. 11 (1975), 371-389.

E. V. Konstantinova, A survey of the cell-growth problem and some its variations, Com 2 MaC-KOSEF, 2001.

Index entries for "core" sequences

FORMULA

a(n) ~ 3^(3*n + 1/2) / (sqrt(Pi) * n^(5/2) * 2^(2*n + 4)). - Vaclav Kotesovec, Mar 13 2016

MATHEMATICA

p=4; Table[(Binomial[(p-1)n, n]/(((p-2)n+1)((p-2)n+2)) + If[OddQ[n], If[OddQ[p], Binomial[(p-1)n/2, (n-1)/2]/n, (p+1)Binomial[((p-1)n-1)/2, (n-1)/2]/((p-2)n+2)], 3Binomial[(p-1)n/2, n/2]/((p-2)n+2)]+Plus @@ Map[EulerPhi[ # ]Binomial[((p-1)n+1)/#, (n-1)/# ]/((p-1)n+1)&, Complement[Divisors[GCD[p, n-1]], {1, 2}]])/2, {n, 1, 20}] (* Robert A. Russell, Dec 11 2004 *)

CROSSREFS

Column k=4 of A295260.

Cf. A005419, A004127, A005038, A005040, A000207.

Sequence in context: A205486 A210668 A279564 * A012051 A012159 A009736

Adjacent sequences:  A005033 A005034 A005035 * A005037 A005038 A005039

KEYWORD

core,nonn,nice,changed

AUTHOR

N. J. A. Sloane

EXTENSIONS

More terms from Sascha Kurz, Oct 13 2001

Name edited by Andrew Howroyd, Nov 20 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified January 17 18:28 EST 2018. Contains 297829 sequences.