This site is supported by donations to The OEIS Foundation.



Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 4500 articles have referenced us, often saying "we would not have discovered this result without the OEIS".

(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A005036 Number of ways of dissecting a polygon into n quadrilaterals.
(Formerly M1491)

%I M1491

%S 1,1,2,5,16,60,261,1243,6257,32721,175760,963900,5374400,30385256,

%T 173837631,1004867079,5861610475,34469014515,204161960310,

%U 1217145238485,7299007647552,44005602441840

%N Number of ways of dissecting a polygon into n quadrilaterals.

%C The subsequence of primes begins: 2, 5, 6257, no more through a(100). - _Jonathan Vos Post_, Apr 08 2011

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H T. D. Noe, <a href="/A005036/b005036.txt">Table of n, a(n) for n = 1..100</a>

%H F. Harary, E. M. Palmer and R. C. Read, <a href="http://dx.doi.org/10.1016/0012-365X(75)90041-2">On the cell-growth problem for arbitrary polygons</a>, Discr. Math. 11 (1975), 371-389.

%H E. V. Konstantinova, <a href="http://com2mac.postech.ac.kr/papers/2001/01-06.pdf">A survey of the cell-growth problem and some its variations</a>, Com 2 MaC-KOSEF, 2001.

%H <a href="/index/Cor#core">Index entries for "core" sequences</a>

%t p=4; Table[(Binomial[(p-1)n, n]/(((p-2)n+1)((p-2)n+2)) + If[OddQ[n], If[OddQ[p], Binomial[(p-1)n/2, (n-1)/2]/n, (p+1)Binomial[((p-1)n-1)/2, (n-1)/2]/((p-2)n+2)], 3Binomial[(p-1)n/2, n/2]/((p-2)n+2)]+Plus @@ Map[EulerPhi[ # ]Binomial[((p-1)n+1)/#, (n-1)/# ]/((p-1)n+1)&, Complement[Divisors[GCD[p, n-1]], {1, 2}]])/2, {n, 1, 20}] - _Robert A. Russell_, Dec 11 2004

%Y Cf. A005419, A004127, A005038, A005040, A000207.

%K core,nonn,nice

%O 1,3

%A _N. J. A. Sloane_

%E More terms from _Sascha Kurz_, Oct 13 2001

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified November 27 18:27 EST 2015. Contains 264550 sequences.