|
|
A100103
|
|
a(n) = 2^(2*n) - 2*n.
|
|
0
|
|
|
1, 2, 12, 58, 248, 1014, 4084, 16370, 65520, 262126, 1048556, 4194282, 16777192, 67108838, 268435428, 1073741794, 4294967264, 17179869150, 68719476700, 274877906906, 1099511627736, 4398046511062, 17592186044372, 70368744177618
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
Table of n, a(n) for n=0..23.
Guo-Niu Han, Enumeration of Standard Puzzles, 2011. [Cached copy]
Guo-Niu Han, Enumeration of Standard Puzzles, arXiv:2006.14070 [math.CO], 2020.
Index entries for linear recurrences with constant coefficients, signature (6,-9,4).
|
|
FORMULA
|
From Colin Barker, May 29 2012: (Start)
a(n) = 6*a(n-1) - 9*a(n-2) + 4*a(n-3).
G.f.: (1 - 4*x + 9*x^2)/((1 - x)^2*(1 - 4*x)). (End)
|
|
MAPLE
|
seq(2^(2*n)-2*n, n=0..20);
|
|
CROSSREFS
|
Bisection of A000325.
Sequence in context: A005038 A094780 A268594 * A281028 A054145 A285364
Adjacent sequences: A100100 A100101 A100102 * A100104 A100105 A100106
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Jorge Coveiro, Dec 26 2004
|
|
STATUS
|
approved
|
|
|
|