login
A100101
Bell(2n)*(2n-1)!!, where Bell are the Bell numbers A000110.
0
1, 2, 45, 3045, 434700, 109596375, 43800340815, 25797179878470, 21243510135522675, 23503974546075598575, 33865310276598741840900, 61964234361152712204340725, 141027420945032510510113517025
OFFSET
0,2
COMMENTS
This sequence arises in the normal ordering problem the exponential of square of boson number operator.
FORMULA
a(n) = Bell(2*n)*(2*n)!/(2^n*n!) = A001147(n)*A000110(2*n).
E.g.f.: G(x) = Sum_{k>=0} exp((k*x)^2/2-1)/k!; a(n) = subs(x=0, (d^(2n)/dx^(2n))G(x)).
MATHEMATICA
Array[BellB[2 #] (2 # - 1)!! &, 13, 0] (* Michael De Vlieger, Dec 24 2017 *)
PROG
(PARI) a(n)=round(exp(-1)*suminf(k=0, k^(2*n)/k!))*(2*n)!/(2^n*n!) \\ Charles R Greathouse IV, Nov 06 2011
CROSSREFS
Sequence in context: A092654 A374863 A209606 * A332244 A090601 A266016
KEYWORD
nonn
AUTHOR
Karol A. Penson, Nov 03 2004
STATUS
approved