login
A285364
Sum of the entries in the second blocks of all set partitions of [n].
2
2, 12, 58, 273, 1329, 6839, 37423, 217606, 1340597, 8719806, 59680387, 428481322, 3218109788, 25220647760, 205790862332, 1744755841379, 15342274425585, 139692065365753, 1314995731359189, 12780466391685166, 128081591768679823, 1322011886920066940
OFFSET
2,1
LINKS
FORMULA
a(n) = A285362(n,2).
EXAMPLE
a(3) = 12 because the sum of the entries in the second blocks of all set partitions of [3] (123, 12|3, 13|2, 1|23, 1|2|3) is 0+3+2+5+2 = 12.
MAPLE
a:= proc(h) option remember; local b; b:=
proc(n, m) option remember;
`if`(n=0, [1, 0], add((p-> `if`(j=2, p+ [0,
(h-n+1)*p[1]], p))(b(n-1, max(m, j))), j=1..m+1))
end: b(h, 0)[2]
end:
seq(a(n), n=2..30);
MATHEMATICA
a[h_] := a[h] = Module[{b}, b[n_, m_] := b[n, m] = If[n == 0, {1, 0}, Sum[Function[p, If[j == 2, p + {0, (h - n + 1)*p[[1]]}, p]][b[n - 1, Max[m, j]]], {j, 1, m + 1}]]; b[h, 0][[2]]];
Table[a[n], {n, 2, 30}] (* Jean-François Alcover, May 27 2018, from Maple *)
CROSSREFS
Column k=2 of A285362.
Sequence in context: A100103 A281028 A054145 * A282435 A001758 A037133
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Apr 17 2017
STATUS
approved