This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A054145 Row sums of array T as in A054144. 2
 0, 2, 12, 58, 256, 1072, 4336, 17112, 66304, 253280, 956608, 3579680, 13292544, 49039360, 179912448, 656874368, 2388205568, 8650598912, 31231020032, 112419973632, 403596148736, 1445463642112, 5165581660160, 18423238924288 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (8,-20,16,-4). FORMULA G.f.: 2*x*(1 - x)^2/(1 - 4*x + 2*x^2)^2. a(n) = ((n-2)*((2 + sqrt(2))^n + (2 - sqrt(2))^n) + sqrt(2)*((2 + sqrt(2))^n - (2 - sqrt(2))^n))/8. - G. C. Greubel, Jul 31 2019 MATHEMATICA LinearRecurrence[{8, -20, 16, -4}, {0, 2, 12, 58}, 30] (* G. C. Greubel, Jul 31 2019 *) PROG (PARI) my(x='x+O('x^30)); concat([0], Vec(2*x*(1-x)^2/(1-4*x+2*x^2)^2)) \\ G. C. Greubel, Jul 31 2019 (MAGMA) R:=PowerSeriesRing(Integers(), 30); [0] cat Coefficients(R!( 2*x*(1-x)^2/(1-4*x+2*x^2)^2 )); // G. C. Greubel, Jul 31 2019 (Sage) (2*x*(1-x)^2/(1-4*x+2*x^2)^2).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jul 31 2019 (GAP) a:=[0, 2, 12, 58];; for n in [5..30] do a[n]:=8*a[n-1]-20*a[n-2] +16*a[n-3]-4*a[n-4]; od; a; # G. C. Greubel, Jul 31 2019 CROSSREFS Sequence in context: A268594 A100103 A281028 * A285364 A282435 A001758 Adjacent sequences:  A054142 A054143 A054144 * A054146 A054147 A054148 KEYWORD nonn AUTHOR Clark Kimberling, Mar 18 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 5 13:26 EST 2019. Contains 329751 sequences. (Running on oeis4.)