login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A038853
Numbers that are divisible by 5 and are the difference between two (different positive) cubes in at least one way.
2
215, 335, 485, 665, 875, 1115, 1330, 1385, 1685, 1720, 2015, 2170, 2375, 2680, 2765, 3185, 3250, 3635, 3880, 4095, 4115, 4570, 4625, 4905, 5165, 5320, 5735, 5805, 6130, 6335, 6795, 6965, 7000, 7625, 7875, 7930, 8315, 8920, 9035, 9045, 9260, 9785, 9970
OFFSET
1,1
FORMULA
A number is in this sequence iff it is of the form (k+5j)^3-k^3, where k,j are any positive integers, since (k+d)^3 - k^3 = d(3(k+d/2)^2+d^2/4) = 0 (mod 5) iff d=0 (mod 5), since 3x^2 =-y^2/4 (mod 5) iff x=y=0 (mod 5). - M. F. Hasler, Jun 07 2007
MATHEMATICA
With[{nn=50}, Take[(#[[1]]+5#[[2]])^3-#[[1]]^3&/@Tuples[Range[nn], 2]// Union, nn]] (* Harvey P. Dale, Jan 24 2019 *)
PROG
(PARI) A038853(Nmax=10^4, a=[]) = { local(t, j5); for(j=1, Nmax^(1/3)/5, j5=5*j; for(k=1, sqrt((Nmax/j5-j5^2-3*j5)/3), if(Nmax<t=(k+j5)^3-k^3, next); a=concat(a, t))); vecsort(a) } \\ M. F. Hasler, Jun 07 2007
CROSSREFS
Sequence in context: A181008 A191943 A046011 * A038860 A120536 A043391
KEYWORD
nonn
AUTHOR
EXTENSIONS
Corrected by M. F. Hasler, Jun 07 2007
STATUS
approved